OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28304–28313

Effect of interdome spacing on the resonance properties of plasmonic nanodome arrays for label-free optical sensing

Charles J. Choi and Steve Semancik  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28304-28313 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report on experimental and theoretical studies that investigate how the structural properties of plasmonic nanodome array devices determine their optical properties and sensing performance. We examined the effect of the interdome gap spacing within the plasmonic array structures on the performance for detection of change in local refractive index environment for label-free capture affinity biosensing applications. Optical sensing properties were characterized for nanodome array devices with interdome spacings of 14 nm, 40 nm, and 79 nm, as well as for a device where adjacent domes are in contact. For each interdome spacing, the extinction spectrum was measured using a broadband reflection instrumentation, and finite-difference-time-domain (FDTD) simulation was used to model the local electric field distribution associated with the resonances. Based on these studies, we predict that nanodome array devices with gap between 14 nm to 20 nm provide optimal label-free capture affinity biosensing performances, where the dipole resonance mode exhibits the highest overall surface sensitivity, as well as the lowest limit of detection.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: August 26, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 7, 2013
Published: November 11, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Charles J. Choi and Steve Semancik, "Effect of interdome spacing on the resonance properties of plasmonic nanodome arrays for label-free optical sensing," Opt. Express 21, 28304-28313 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  4. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008). [CrossRef] [PubMed]
  5. B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009). [CrossRef]
  6. A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007). [CrossRef]
  7. T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005). [CrossRef] [PubMed]
  8. X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010). [CrossRef] [PubMed]
  9. C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008). [CrossRef] [PubMed]
  10. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J Opt A-Pure Appl Op11, 114001 (2009).
  11. J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010). [CrossRef]
  12. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009). [CrossRef] [PubMed]
  13. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007). [CrossRef] [PubMed]
  14. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008). [CrossRef] [PubMed]
  15. F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008). [CrossRef]
  16. C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012). [CrossRef] [PubMed]
  17. C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010). [CrossRef] [PubMed]
  18. H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012). [CrossRef] [PubMed]
  19. E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985), pp. xviii, 804 p.
  20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  21. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  22. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010). [CrossRef]
  23. R. A. Awang, S. H. El-Gohary, N. H. Kim, and K. M. Byun, “Enhancement of field-analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection,” Appl. Opt.51(31), 7437–7442 (2012). [CrossRef] [PubMed]
  24. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002). [CrossRef]
  25. M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008). [CrossRef]
  26. P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008). [CrossRef] [PubMed]
  27. W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009). [CrossRef] [PubMed]
  28. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited