OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28314–28324

Numerical iterative approach for zero-order term elimination in off-axis digital holography

Zhonghong Ma, Lijun Deng, Yong Yang, Hongchen Zhai, and Qi Ge  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28314-28324 (2013)
http://dx.doi.org/10.1364/OE.21.028314


View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel numerical iterative approach is proposed to effectively eliminate the zero-order term and to improve the signal-to-noise ratio of the reconstructed image in off-axis digital holography. The iterations are conducted in the spatial domain, resulting in considerable reduction in the computational time and avoiding the subjectivity involved in selecting a filter window in spectral domain. These advantages promote the application of this approach in real-time detection processes. The feasibility of this approach is confirmed by mathematical deductions and numerical simulations, and the robustness of the proposed approach is tested by means of an experimentally obtained hologram.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 26, 2013
Published: November 11, 2013

Citation
Zhonghong Ma, Lijun Deng, Yong Yang, Hongchen Zhai, and Qi Ge, "Numerical iterative approach for zero-order term elimination in off-axis digital holography," Opt. Express 21, 28314-28324 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am.55(5), 981–986 (1965). [CrossRef]
  2. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett.34(8), 1162–1164 (2009). [CrossRef] [PubMed]
  3. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt.38(23), 4990–4996 (1999). [CrossRef] [PubMed]
  4. K. Khare, P. T. S. Ali, and J. Joseph, “Single shot high resolution digital holography,” Opt. Express21(3), 2581–2591 (2013). [CrossRef] [PubMed]
  5. L. Ma, H. Wang, Y. Li, and H. Jin, “Partition calculation for zero-order and conjugate image removal in digital in-line holography,” Opt. Express20(2), 1805–1815 (2012). [CrossRef] [PubMed]
  6. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  7. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt.40(34), 6177–6186 (2001). [CrossRef] [PubMed]
  8. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett.29(8), 857–859 (2004). [CrossRef] [PubMed]
  9. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express17(18), 15585–15591 (2009). [CrossRef] [PubMed]
  10. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett.28(19), 1808–1810 (2003). [CrossRef] [PubMed]
  11. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Two-step demodulation based on the Gram-Schmidt orthonormalization method,” Opt. Lett.37(3), 443–445 (2012). [CrossRef] [PubMed]
  12. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng.41(10), 2434–2437 (2002). [CrossRef]
  13. N. Demoli, J. Mestrović, and I. Sović, “Subtraction digital holography,” Appl. Opt.42(5), 798–804 (2003). [CrossRef] [PubMed]
  14. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009). [CrossRef] [PubMed]
  15. J. Wu, M. F. Lu, Y. C. Dong, M. Zheng, M. Huang, and Y. N. Wu, “Zero-order noise suppression with various space-shifting manipulations of reconstructed images in digital holography,” Appl. Opt.50(34), H56–H61 (2011). [CrossRef] [PubMed]
  16. Y. Dong and J. Wu, “Space-shifting digital holography with dc term removal,” Opt. Lett.35(8), 1287–1289 (2010). [CrossRef] [PubMed]
  17. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express18(15), 15318–15331 (2010). [CrossRef] [PubMed]
  18. F.B. Soulard, A. Purvis, R. McWilliam, J.J. Cowling, G.L. Williams, J.J.Toriz-Garcia, N.L. Seed, and P.A. Ivey, “Iterative zero-order suppression from an off-axis hologram based on the 2D Hilbert transform”, Biomedical Optics and 3-D Imaging, OSA Technical Digest (Optical Society of America), paper DSu3C.4.(2012).
  19. J. W. Goodman, Introduction to Fourier Optics 2nd edition (McGraw Hill, New York, 1996).
  20. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett.34(3), 250–252 (2009). [CrossRef] [PubMed]
  21. http://en.wikipedia.org/wiki/Cosine_similarity

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited