OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28344–28358

Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial

Dafei Jin and Nicholas X. Fang  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28344-28358 (2013)
http://dx.doi.org/10.1364/OE.21.028344


View Full Text Article

Enhanced HTML    Acrobat PDF (2264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical study in the structure-modulated plasmonic angular momentum, which is trapped in the core region of a sectorial indefinite metamaterial. This metamaterial consists of periodically arranged metal-dielectric nano-wedges along the azimuthal direction. Employing a transfer-matrix calculation and a conformal-mapping technique, our theory can deal with an arbitrary number of wedges with realistically rounded tips. We demonstrate that in the deep-subwavelength regime, strong electric fields that carry large azimuthal variations can exist only within ten-nanometer length scale around the structural center. They are naturally bounded by a characteristic radius on the order of a hundred nanometers from the center. These extreme confining properties suggest that the structure under investigation can be superior to the conventional metal-dielectric cavities in terms of nanoscale photonic manipulation.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: September 9, 2013
Revised Manuscript: October 28, 2013
Manuscript Accepted: October 28, 2013
Published: November 11, 2013

Citation
Dafei Jin and Nicholas X. Fang, "Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial," Opt. Express 21, 28344-28358 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  2. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 067402 (2010). [CrossRef] [PubMed]
  3. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U. S. A.108, 11327–11331 (2011). [CrossRef] [PubMed]
  4. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6, 450–454 (2012). [CrossRef]
  5. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  7. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006). [CrossRef] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007). [CrossRef] [PubMed]
  9. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater.11, 931–934 (2009). [CrossRef]
  10. J. Li, L. Thylen, A. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Optical magnetic plasma in artificial flowers,” Opt. Express17, 10800–10805 (2009). [CrossRef] [PubMed]
  11. L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B6, 3810–3815 (1972). [CrossRef]
  12. A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B24, 5703–5712 (1981). [CrossRef]
  13. R. Garcia-Molina, A. Gras-Marti, and R. H. Ritchie, “Excitation of edge modes in the interaction of electron beams with dielectric wedges,” Phys. Rev. B31, 121–126 (1985). [CrossRef]
  14. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  15. A. Ferrando, “Discrete-symmetry vortices as angular Bloch modes,” Phys. Rev. E72, 036612 (2005). [CrossRef]
  16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  17. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292, 912–914 (2001). [CrossRef] [PubMed]
  18. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  19. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10, 529–536 (2010). [CrossRef] [PubMed]
  20. Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett.37, 4627–4629 (2012). [CrossRef] [PubMed]
  21. C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008). [CrossRef]
  22. Q. Hu, D.-H. Xu, R.-W. Peng, Y. Zhou, Q.-L. Yang, and M. Wang, “Tune the “rainbow” trapped in a multilayered waveguide,” Europhys. Lett.99, 57007 (2012). [CrossRef]
  23. Q. Li and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?” Opt. Express21, 8587–8595 (2013). [CrossRef] [PubMed]
  24. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
  25. V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A69, 013812 (2004). [CrossRef]
  26. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182, 539–554 (1969). [CrossRef]
  27. J. D. Jackson, Classical Electrodynamics (John Wiley, 1998).
  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, 1965).
  29. A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge,” Proc. R. Soc. Lond. A455, 2655–2686 (1999). [CrossRef]
  30. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Brooks/Cole, 1976).
  31. P. G. Kik, S. A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004). [CrossRef]
  32. Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett.35, 1160–1162 (2010). [CrossRef] [PubMed]
  33. L. C. Davis, “Electrostatic edge modes of a dielectric wedge,” Phys. Rev. B14, 5523–5525 (1976). [CrossRef]
  34. N. W. McLachlan, Theory and Application of Mathieu Functions (Oxford University, 1951).
  35. H. Benisty, “Dark modes, slow modes, and coupling in multimode systems,” J. Opt. Soc. Am. B26, 718–724 (2009). [CrossRef]
  36. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited