OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28387–28393

Germanium photodetector with 60 GHz bandwidth using inductive gain peaking

Ari Novack, Mike Gould, Yisu Yang, Zhe Xuan, Matthew Streshinsky, Yang Liu, Giovanni Capellini, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28387-28393 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germanium-on-silicon photodetectors have been heavily investigated in recent years as a key component of CMOS-compatible integrated photonics platforms. It has previously been shown that detector bandwidths could theoretically be greatly increased with the incorporation of a carefully chosen inductor and capacitor in the photodetector circuit. Here, we show the experimental results of such a circuit that doubles the detector 3dB bandwidth to 60 GHz. These results suggest that gain peaking is a generally applicable tool for increasing detector bandwidth in practical photonics systems without requiring the difficult process of lowering detector capacitance.

© 2013 Optical Society of America

OCIS Codes
(040.6070) Detectors : Solid state detectors
(130.0130) Integrated optics : Integrated optics
(250.0250) Optoelectronics : Optoelectronics
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:

Original Manuscript: September 26, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 1, 2013
Published: November 11, 2013

Ari Novack, Mike Gould, Yisu Yang, Zhe Xuan, Matthew Streshinsky, Yang Liu, Giovanni Capellini, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg, "Germanium photodetector with 60 GHz bandwidth using inductive gain peaking," Opt. Express 21, 28387-28393 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  3. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998). [CrossRef]
  4. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000). [CrossRef]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  6. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  7. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express19(11), 10967–10972 (2011). [CrossRef] [PubMed]
  8. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011). [CrossRef] [PubMed]
  9. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express20(2), 1096–1101 (2012). [CrossRef] [PubMed]
  10. S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006). [CrossRef]
  11. C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005). [CrossRef]
  12. J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992). [CrossRef]
  13. S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000). [CrossRef]
  14. J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851. [CrossRef]
  15. J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010). [CrossRef]
  16. G. Rangel-Sharp, R. E. Miles, and S. Iezekiel, “Physical Modeling of Traveling-Wave Heterojunction Phototransistors,” J. Lightwave Technol.26(13), 1943–1949 (2008). [CrossRef]
  17. M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express21(13), 15634–15644 (2013). [CrossRef] [PubMed]
  18. J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011). [CrossRef] [PubMed]
  19. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  20. M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express20(7), 7101–7111 (2012). [CrossRef] [PubMed]
  21. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited