OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28456–28468

Compact filters and demultiplexers based on long-range air-hole assisted subwavelength waveguides

Wen Zhou and Xu Guang Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28456-28468 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compact filters and demultiplexers based on long-range air-hole assisted subwavelength (LR-AHAS) waveguides have been proposed and numerically demonstrated. The tunable reflective filters possess the characters of high extinction ratio (17.5dB) and narrow bandwidth (10.1nm). The average demultiplexing bandwidth of a 1 × 3 wavelength demultiplexer based on LR-AHAS waveguide is 17.3 nm. The drop efficiencies can be significantly enhanced up to 60% by employing proposed filters in the structure. With distinguished wavelength-filtering/dropping characters and compact footprints, the proposed filters and demultiplexers could become the fundamental signal processing components in the LR-AHAS waveguides for large-scale photonic integrations.

© 2013 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(230.7370) Optical devices : Waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: August 21, 2013
Revised Manuscript: October 22, 2013
Manuscript Accepted: November 1, 2013
Published: November 12, 2013

Wen Zhou and Xu Guang Huang, "Compact filters and demultiplexers based on long-range air-hole assisted subwavelength waveguides," Opt. Express 21, 28456-28468 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  2. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003). [CrossRef] [PubMed]
  3. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  4. R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  5. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  6. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013). [CrossRef] [PubMed]
  7. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  8. W. Zhou and X. G. Huang, “Long-range air-hole assisted subwavelength waveguides,” Nanotechnology24(23), 235203 (2013). [CrossRef] [PubMed]
  9. S. Zamek, D. T. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett.35(20), 3477–3479 (2010). [CrossRef] [PubMed]
  10. A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol.24(2), 912–918 (2006). [CrossRef]
  11. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett.31(3), 341–343 (2006). [CrossRef] [PubMed]
  12. T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, and A. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett.94(5), 051111 (2009). [CrossRef]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  14. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B26(7), 1263–1268 (2009). [CrossRef]
  15. J. Tao, X. Huang, and S. Liu, “Optical characteristics of surface plasmon nanonotch structure,” J. Opt. Soc. Am. B27(7), 1430–1434 (2010). [CrossRef]
  16. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011). [CrossRef] [PubMed]
  17. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012). [CrossRef] [PubMed]
  18. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19(14), 12885–12890 (2011). [CrossRef] [PubMed]
  19. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  20. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett.36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  21. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited