OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28628–28637

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28628-28637 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Considering the propagation of surface plasmon polaritons (SPPs) supported by a graphene monolayer can be effectively controlled via electrostatic gating, we propose a graphene monolayer on a graded silicon-grating substrate with dielectric spacer as an interlayer for plasmonic rainbow trapping in the infrared domain. Since the dispersive relation of SPPs is dependent on the width of dielectric spacer filling the silicon grating, the guided SPPs at different frequencies can be localized at different positions along the graphene surface, associated with the period of silicon grating. The group velocity of slow SPPs can be made to be several hundred times smaller than light velocity in vacuum. We also predict the capability of completely releasing the trapped SPPs by dynamically tuning the chemical potential of graphene by means of gate voltage. The advantages of such a structure include compact size, wide frequency tunability, and compatibility with current micro/nanofabrication, which holds great promise for applications in graphene-based optoelectronic devices.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves

ToC Category:

Original Manuscript: September 26, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 8, 2013
Published: November 14, 2013

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang, "Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate," Opt. Express 21, 28628-28637 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438(7069), 828–832 (2005). [CrossRef] [PubMed]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001). [CrossRef] [PubMed]
  4. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005). [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94(15), 153902 (2005). [CrossRef] [PubMed]
  6. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007). [CrossRef] [PubMed]
  7. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001). [CrossRef] [PubMed]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  9. L. Chen and G. Wang, “Nanofocusing of light energy by ridged metal heterostructures,” Appl. Phys. B89(4), 573–577 (2007). [CrossRef]
  10. L. Chen, X. Li, and G. P. Wang, “A hybrid long-range plasmonic waveguide with sub-wavelength confinement,” Opt. Commun.291, 400–404 (2013). [CrossRef]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  12. L. Chen and G. P. Wang, “Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging,” Opt. Express17(5), 3903–3912 (2009). [CrossRef] [PubMed]
  13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  14. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008). [CrossRef] [PubMed]
  15. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011). [CrossRef] [PubMed]
  16. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120 (2012). [CrossRef] [PubMed]
  17. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013). [CrossRef] [PubMed]
  18. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009). [CrossRef] [PubMed]
  19. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009). [CrossRef]
  20. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett.97(15), 153115 (2010). [CrossRef]
  21. L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011). [CrossRef]
  22. S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep.2, 583 (2012). [CrossRef] [PubMed]
  23. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010). [CrossRef] [PubMed]
  24. W. Lu, Y. Huang, B. Casse, R. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010). [CrossRef] [PubMed]
  25. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991). [CrossRef] [PubMed]
  26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  27. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  28. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  29. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487(7405), 82–85 (2012). [PubMed]
  30. H. Ju Xu, W. Bing Lu, Y. Jiang, and Z. Gao Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett.100(5), 051903 (2012). [CrossRef]
  31. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009). [CrossRef]
  32. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85(12), 125431 (2012). [CrossRef]
  33. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett.100(13), 131111 (2012). [CrossRef]
  34. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86(12), 121108 (2012). [CrossRef]
  35. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013). [CrossRef] [PubMed]
  36. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  37. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6(9), 7806–7813 (2012). [CrossRef] [PubMed]
  38. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5(7), 5855–5863 (2011). [CrossRef] [PubMed]
  39. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  40. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007). [CrossRef]
  41. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  42. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  43. W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.96(11), 113102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited