OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28638–28650

Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry

Kenneth Diest, Vladimir Liberman, Donna M. Lennon, Paul B. Welander, and Mordechai Rothschild  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28638-28650 (2013)
http://dx.doi.org/10.1364/OE.21.028638


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have established a method to quantify and optimize the plasmonic behavior of aluminum thin films by coupling spectroscopic ellipsometry into surface plasmon polaritons using a liquid prism cell in a modified Otto configuration. This procedure was applied to Al thin films deposited by four different methods, as well as to single crystal Al substrates, to determine the broadband optical constants and calculate plasmonic figures of merit. The best performance was achieved with Al films that have been sputter-deposited at high temperatures of 350°C, followed by chemical mechanical polishing. This combination of temperature and post-processing produced aluminum films with both large grain size and low surface roughness. Comparing these figures of merit with literature values of gold, silver, and copper shows that at blue and ultraviolet wavelengths, optimized aluminum has the highest figure of merit of all materials studied. We further employ the Ashcroft and Sturm theory of optical conductivity to extract the electron scattering times for the Drude and effective interband transitions, interband transition energies, and the optical mass of electrons.

© 2013 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Plasmonics

History
Original Manuscript: October 1, 2013
Manuscript Accepted: October 30, 2013
Published: November 14, 2013

Citation
Kenneth Diest, Vladimir Liberman, Donna M. Lennon, Paul B. Welander, and Mordechai Rothschild, "Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry," Opt. Express 21, 28638-28650 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28638


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995). [CrossRef]
  2. A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983). [CrossRef]
  3. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963). [CrossRef]
  4. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011). [CrossRef]
  5. T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998). [CrossRef]
  6. N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971). [CrossRef]
  7. URL: http://mtixtl.com/
  8. URL: http://www.jawoollam.com
  9. URL: http://cargille.com/laserliq.shtml
  10. E. Hecht, Optics (Addison Wesley, 1998).
  11. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).
  12. A. Otto, “Excitation of nonradiative surface plasma waves in Silver by method of frustrated total reflection,” Z. Phys.216, 398–410 (1968). [CrossRef]
  13. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007). [CrossRef]
  14. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer-Verlag, 2005). [CrossRef]
  15. S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010). [CrossRef]
  16. A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008). [CrossRef]
  17. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt.43, 3028–3036 (2004). [CrossRef] [PubMed]
  18. J. A. Woolam, Guide to Using WVASE32 (J. A. Woollam Co., Inc., 2002).
  19. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Inc., 1997).
  20. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010). [CrossRef]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  22. K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010). [CrossRef] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  24. G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986). [CrossRef]
  25. H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992). [CrossRef] [PubMed]
  26. H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993). [CrossRef]
  27. C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006). [CrossRef]
  28. C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010). [CrossRef]
  29. K. Diest, ed., Numerical Methods for Metamaterial Design (Springer, 2013). [CrossRef]
  30. S. Le Digabel, “NOMAD user guide,” Technical Report G-2009-37, Les cahiers du GERAD, 2009.
  31. A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972). [CrossRef]
  32. A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997). [CrossRef]
  33. D. Brust, “Band structure and optical properties of Aluminum,” Solid State Commun.8, 413–416 (1970). [CrossRef]
  34. P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977). [CrossRef]
  35. D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978). [CrossRef] [PubMed]
  36. D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances | dielectricity constants and conductivity of mixed bodies from Isotropic substances,” Ann. Phys.24, 636–664 (1935). [CrossRef]
  37. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions - II,” Philos. T. Roy. Soc. A205, 237–288 (1906). [CrossRef]
  38. N. W. Ashcroft, “Fermi surface of Aluminum,” Philos. Mag.8, 2055–2083 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited