OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28836–28841

Experimental demonstration of intermodal nonlinear effects between full vectorial modes in a few moded fiber

Lars Rishøj, Poul Kristensen, Siddharth Ramachandran, and Karsten Rottwitt  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28836-28841 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigate intermodal nonlinear interactions, such as Raman scattering and four wave mixing. The fiber used is a specially designed few moded fiber, which splits the degeneracy of the first mode group, leading to stable propagation of the two full vectorial modes, TM01 and TE01. For the Raman experiments pumping occur in either the fundamental mode or the two full vectorial modes, whereas the signal is in the fundamental mode. In all three experiments approximately 40 dB of gain is achieved using 307 W of pump peak power. When pumping in either of the full vectorial modes four wave mixing is observed.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: September 17, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 11, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Lars Rishøj, Poul Kristensen, Siddharth Ramachandran, and Karsten Rottwitt, "Experimental demonstration of intermodal nonlinear effects between full vectorial modes in a few moded fiber," Opt. Express 21, 28836-28841 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B29, 1563–1568 (2012). [CrossRef]
  2. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. S. Russell, “Amplification of higher-order modes by stimulated Raman scattering in h2-filled hollow-core photonic crystal fiber,” Opt. Lett.38, 600–602 (2013). [CrossRef] [PubMed]
  3. K. Rottwitt and J. Povlsen, “Analyzing the fundamental properties of Raman amplification in optical fibers,” J. Lightwave Technol.23, 3597–3605 (2005). [CrossRef]
  4. C. Antonelli, A. Mecozzi, and M. Shtaif, “Raman amplification in multimode fibers with random mode coupling,” Opt. Lett.38, 1188–1190 (2013). [CrossRef] [PubMed]
  5. R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011). [CrossRef]
  6. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quant. Electron.11, 100–103 (1975). [CrossRef]
  7. L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012). [CrossRef]
  8. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013). [CrossRef] [PubMed]
  9. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009). [CrossRef] [PubMed]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34, 2525–2527 (2009). [CrossRef] [PubMed]
  11. S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express18, 23212–23217 (2010). [CrossRef] [PubMed]
  12. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron.15, 1157–1160 (1979). [CrossRef]
  13. J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002). [CrossRef]
  14. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited