OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28849–28855

Efficient second to ninth harmonic generation using megawatt peak power microchip laser

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28849-28855 (2013)
http://dx.doi.org/10.1364/OE.21.028849


View Full Text Article

Enhanced HTML    Acrobat PDF (2409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

© 2013 Optical Society of America

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 20, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, "Efficient second to ninth harmonic generation using megawatt peak power microchip laser," Opt. Express 21, 28849-28855 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999). [CrossRef]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  3. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010). [CrossRef]
  4. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011). [CrossRef] [PubMed]
  5. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express2(7), 907–919 (2012). [CrossRef]
  6. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers: errata,” Opt. Lett.21(19), 1618 (1996). [CrossRef] [PubMed]
  7. N. P. Lockyer and J. C. Vickerman, “Single photon ionization mass spectrometry using laser-generated vacuum ultraviolet photons,” Laser Chem.17(3), 139–159 (1997). [CrossRef]
  8. J. Yang, X. B. Wang, X. P. Xing, and L. S. Wang, “Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La),” J. Chem. Phys.128(20), 201102 (2008). [CrossRef] [PubMed]
  9. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]
  10. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Elect. 11, 287–296. [CrossRef]
  11. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng.52(7), 076102 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited