OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28862–28876

On timing jitter of mode locked Kerr frequency combs

Andrey B. Matsko and Lute Maleki  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28862-28876 (2013)
http://dx.doi.org/10.1364/OE.21.028862


View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study fundamental timing jitter in repetition rate of a mode locked Kerr frequency comb generated in an externally pumped nonlinear ring resonator. We show that the increase in the integrated power of the comb harmonics, and the corresponding decrease of the duration of the associated pulse, results in the increase of low frequency noise, and a decrease in high frequency noise.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4910) Optical devices : Oscillators
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 15, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
Andrey B. Matsko and Lute Maleki, "On timing jitter of mode locked Kerr frequency combs," Opt. Express 21, 28862-28876 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Del-Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  2. P. Del-Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008). [CrossRef]
  3. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902 (2008). [CrossRef] [PubMed]
  4. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2resonator,” Opt. Lett.34, 878–880 (2009). [CrossRef] [PubMed]
  5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010). [CrossRef]
  6. F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011). [CrossRef]
  7. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011). [CrossRef] [PubMed]
  8. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused quartz microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011). [CrossRef]
  9. P. Del-Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011). [CrossRef]
  10. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2whispering gallery mode resonator,” Opt. Lett.36, 2290–2292 (2011). [CrossRef] [PubMed]
  11. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011). [CrossRef]
  12. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011). [CrossRef] [PubMed]
  13. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012). [CrossRef] [PubMed]
  14. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett.37, 875–877 (2012). [CrossRef] [PubMed]
  15. F. Ferdous, H. X. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012). [CrossRef] [PubMed]
  16. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901 (2012). [CrossRef]
  17. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012). [CrossRef]
  18. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express20, 27290–27298 (2012). [CrossRef] [PubMed]
  19. P. H. Wang, F. Ferdous, H. X. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express20, 29284–29295 (2012). [CrossRef]
  20. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X3, 031003 (2013). [CrossRef]
  21. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013). [CrossRef] [PubMed]
  22. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733v2 (2013).
  23. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Parametric seeding of a microresonator optical frequency comb,” Opt. Express21, 17615–17624 (2013). [CrossRef] [PubMed]
  24. P. Del’Haye, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” arXiv:1307.4091 (2013).
  25. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011). [CrossRef] [PubMed]
  26. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser-Part I: Experiment,” IEEE J. Quantum Electron.25, 2036–2044 (1989). [CrossRef]
  27. M. Haelterman, S. Trillo, and S. Wabnitz, “Additive-modulation-instability ring laser in the normal dispersion regime of a fiber,” Opt. Lett.17, 745–747 (1992). [CrossRef] [PubMed]
  28. S. Coen and M. Haelterman, “Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber,” Phys. Rev. Lett.79, 4139–4142 (1997). [CrossRef]
  29. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett.26, 39–41 (2001). [CrossRef]
  30. D. K. Serkland and P. Kumar, “Tunable fiber-optic parametric oscillator,” Opt. Lett.24, 92–94 (1999). [CrossRef]
  31. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett.58, 2209–2211 (1987). [CrossRef] [PubMed]
  32. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902 (2010). [CrossRef] [PubMed]
  33. Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett.35, 2696–2698 (2010). [CrossRef] [PubMed]
  34. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010). [CrossRef]
  35. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011). [CrossRef] [PubMed]
  36. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012). [CrossRef]
  37. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal GVD Kerr frequency comb,” Opt. Lett.37, 43–45 (2012). [CrossRef] [PubMed]
  38. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett.37, 4856–4858 (2012). [CrossRef] [PubMed]
  39. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012). [CrossRef]
  40. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett.38, 37–39 (2013). [CrossRef] [PubMed]
  41. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett.38, 1790–1792 (2013). [CrossRef] [PubMed]
  42. A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett.38, 525–527 (2013). [CrossRef] [PubMed]
  43. T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A88, 023819 (2013). [CrossRef]
  44. C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: Case of normal dispersion,” arXiv:1308.2539 (2013).
  45. I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: Case of anomalous dispersion,” arXiv:1308.2542 (2013).
  46. M. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” arXiv:1305.4921 (2013).
  47. S. Wabnitz, “Suppression of interactions in a phase-locked soliton optical memory,” Opt. Lett.18, 601–603 (1993). [CrossRef] [PubMed]
  48. I. V. Barashenkov and Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons,” Phys. Rev. E54, 5707–5725 (1996). [CrossRef]
  49. J.-M. Ghidaglia, “Finite dimensional behavior for weakly damped driven Schrödinger equation,” Ann. Inst. Henri Poincare5, 365–405 (1988).
  50. N. I. Karachalios and N. M. Stavrakakis, “Global attractor for the weakly damped driven Schrodinger equation in H2(R),” Nonlinear Diff. Eq. Appl.9, 347–360 (2002). [CrossRef]
  51. C. Zhu, “Attractor of the nonlinear Schrodinger equation,” Commun. Math. Anal.4, 67–75 (2008).
  52. K. J. Blow and N. J. Doran, “Global and local chaos in the pumped nonlinear Schrödinger equation,” Phys. Rev. Lett.52, 526–529 (1984)
  53. Q.-H. Park and H. J. Shin, “Parametric control of soliton light traffic by cw traffic light,” Phys. Rev. Lett.82, 4432–4435 (1999). [CrossRef]
  54. S. Li, L. Li, Z. Li, and G. Zhou, “Properties of soliton solutions on a cw background in optical fibers with higher-order effects,” J. Opt. Soc. Am. B21, 2089–2094 (2004). [CrossRef]
  55. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Whispering gallery mode oscillators and optical comb generators,” in Proceedings of 7th Symposium on Frequency Standards and Metrology, L. Maleki, ed., (World Scientific, 2009), pp. 539–558.
  56. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2resonator,” Phys. Rev. Lett.93, 243905 (2004). [CrossRef]
  57. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008). [CrossRef] [PubMed]
  58. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29, 983–996 (1993). [CrossRef]
  59. A. Hasegawa, “Soliton-based optical communications: An overwiew,” IEEE J. Sel. Top. Quantum Electron.6, 1161–1172 (2000). [CrossRef]
  60. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J.5, 6100409 (2013). [CrossRef]
  61. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited