OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28877–28885

High-coherence mid-infrared frequency comb

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28877-28885 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the generation of a frequency comb around 4330 nm with an unprecedented coherence of the single teeth. Generating the comb within a Ti:sapphire laser cavity by a difference-frequency process and using a phase-lock scheme based on direct digital synthesis, we achieve a tooth linewidth of 2.0 kHz in a 1-s timescale (750 Hz in 20 ms). The generated per-tooth power of 1 μW ranks this comb among the best ever realized in the mid-infrared in terms of power spectral density.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: September 16, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 21, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

I. Galli, F. Cappelli, P. Cancio, G. Giusfredi, D. Mazzotti, S. Bartalini, and P. De Natale, "High-coherence mid-infrared frequency comb," Opt. Express 21, 28877-28885 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999). [CrossRef]
  2. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999). [CrossRef]
  3. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000). [CrossRef] [PubMed]
  4. P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009). [CrossRef]
  5. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19, 3155–3162 (2011). [CrossRef] [PubMed]
  6. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004). [CrossRef] [PubMed]
  7. S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013). [CrossRef]
  8. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011). [CrossRef]
  9. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012). [CrossRef]
  10. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012). [CrossRef] [PubMed]
  11. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett.38, 2636–2639 (2013). [CrossRef] [PubMed]
  12. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005). [CrossRef] [PubMed]
  13. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009). [CrossRef] [PubMed]
  14. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010). [CrossRef] [PubMed]
  15. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009). [CrossRef] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36, 2275–2277 (2011). [CrossRef] [PubMed]
  17. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-doppler spectroscopy,” Opt. Express20, 9178–9186 (2012). [CrossRef] [PubMed]
  18. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012). [CrossRef] [PubMed]
  19. I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013). [CrossRef]
  20. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007). [CrossRef] [PubMed]
  21. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37, 4083–4085 (2012). [CrossRef] [PubMed]
  22. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006). [CrossRef]
  23. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37, 2232–2234 (2012). [CrossRef] [PubMed]
  24. S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013). [CrossRef]
  25. F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett.38, 2360–2362 (2013). [CrossRef] [PubMed]
  26. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36, 4020–4022 (2011). [CrossRef] [PubMed]
  27. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980). [CrossRef]
  28. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010). [CrossRef]
  29. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982). [CrossRef]
  30. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011). [CrossRef]
  31. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited