OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28960–28967

Spectrally encoded angular light scattering

Jost Adam, Ata Mahjoubfar, Eric D. Diebold, Brandon W. Buckley, and Bahram Jalali  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28960-28967 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We introduce a new spectrally encoded angular light scattering method, with potential application in scanning flow cytometry. We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular dependence of scattering via wavelength equalization. Continuous angular spectrum is obtained without mechanical scanning enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method’s capability of distinguishing differently sized polystyrene beads. The combination of this technique with time-stretch dispersive Fourier transform offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers.

© 2013 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.7160) Medical optics and biotechnology : Ultrafast technology
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: September 9, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 16, 2013
Published: November 15, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Jost Adam, Ata Mahjoubfar, Eric D. Diebold, Brandon W. Buckley, and Bahram Jalali, "Spectrally encoded angular light scattering," Opt. Express 21, 28960-28967 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Davies, Flow Cytometry: Principles and Applications (Humana, 2007, chap. Cell Sorting by Flow Cytometry).
  2. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38, 3651–3661 (1999). [CrossRef]
  3. V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum.71(1), 243–255 (2000). [CrossRef]
  4. K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006). [CrossRef]
  5. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008). [CrossRef]
  6. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012). [CrossRef] [PubMed]
  7. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012). [CrossRef] [PubMed]
  8. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008). [CrossRef]
  9. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009). [CrossRef]
  10. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  11. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express4(9), 1618 (2013). [CrossRef] [PubMed]
  12. D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012). [CrossRef]
  13. B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012). [CrossRef] [PubMed]
  14. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  15. Bangs Laboratories Inc., “Fluorescent polymer mircrospheres,” http://www.bangslabs.com . Accessed: 09/06/2013.
  16. G. Mie, “Beitr¨age zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  17. J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941).
  18. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013). [CrossRef]
  20. P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999). [CrossRef]
  21. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999). [CrossRef]
  22. E. D. Diebold, N. K. Hon, Z. W. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express19(24), 23809–23817 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited