OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29808–29817

Low-loss sharp bends in polymer waveguides enabled by the introduction of a thin metal layer

Mustafa Akin Sefunc, Markus Pollnau, and Sonia M. García-Blanco  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29808-29817 (2013)
http://dx.doi.org/10.1364/OE.21.029808


View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Embodying a thin metallic layer underneath the core of a sharply bent polymer waveguide is shown in this work to considerably reduce the total losses of both the quasi-transverse-electric and quasi-transverse-magnetic modes. The computational results show a total loss as low as ~0.02 dB/90° for the quasi-transverse-electric mode for radii between 6 and 13 µm at the wavelength of 1.55 µm, which corresponds to a 10-fold improvement over the purely dielectric counterpart. The radii range exhibiting such low total loss can be tuned by properly selecting the parameters of the structure. For the quasi-transverse-magnetic mode, the metal layer reduces the total losses modestly for radii ranging from 3 to 10 µm. Simulation results for different structural parameters are presented.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(250.5460) Optoelectronics : Polymer waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: September 26, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 17, 2013
Published: November 25, 2013

Citation
Mustafa Akin Sefunc, Markus Pollnau, and Sonia M. García-Blanco, "Low-loss sharp bends in polymer waveguides enabled by the introduction of a thin metal layer," Opt. Express 21, 29808-29817 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6, 54–68 (2000).
  2. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater.14(19), 1339–1365 (2002). [CrossRef]
  3. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol.27(18), 4091–4096 (2009). [CrossRef]
  4. L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett.25(6), 612–614 (2013). [CrossRef]
  5. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000). [CrossRef] [PubMed]
  6. Y. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett.7(9), 650–656 (2010). [CrossRef]
  7. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science325(5948), 1665–1667 (2009). [CrossRef] [PubMed]
  8. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express16, 4310–4315 (2008).
  9. Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett.43(4), 225–226 (2007). [CrossRef]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  11. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  13. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  14. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112.
  15. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  17. D. J. Dikken, M. Spasenović, E. Verhagen, D. van Oosten, and L. K. Kuipers, “Characterization of bending losses for curved plasmonic nanowire waveguides,” Opt. Express18(15), 16112–16119 (2010). [CrossRef] [PubMed]
  18. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011). [CrossRef] [PubMed]
  19. A. V. Krasavin and A. V. Zayats, “Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides,” Opt. Lett.36(16), 3127–3129 (2011). [CrossRef] [PubMed]
  20. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett.30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  21. C. Yang, E. J. Teo, T. Goh, S. L. Teo, J. H. Teng, and A. A. Bettiol, “Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths,” Opt. Express20(21), 23898–23905 (2012). [CrossRef] [PubMed]
  22. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B78(4), 045425 (2008). [CrossRef]
  23. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008). [CrossRef] [PubMed]
  24. M. W. Kim and P. C. Ku, “Lasing in a metal-clad microring resonator,” Appl. Phys. Lett.98(13), 131107 (2011). [CrossRef]
  25. H. S. Chu, Y. Akimov, P. Bai, and E. P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett.37(21), 4564–4566 (2012). [CrossRef] [PubMed]
  26. C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguide and microring resonators,” IEEE Photon. Technol. Lett.23(17), 1267–1269 (2011). [CrossRef]
  27. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  28. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B13(6), 3012–3016 (1995). [CrossRef]
  29. X. B. Phoeni, V., Enschede, The Netherlands ( www.phoenixbv.com ).
  30. S. M. García-Blanco, M. Pollnau, and S. I. Bozhevolnyi, “Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(25), 25298–25311 (2011). [CrossRef] [PubMed]
  31. K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron.37(1-3), 37–61 (2005). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2942 KB)     
» Media 2: MPG (3194 KB)     
» Media 3: MPG (2972 KB)     
» Media 4: MPG (3246 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited