OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29938–29948

An ultra-broadband multilayered graphene absorber

Muhammad Amin, Mohamed Farhat, and Hakan Bağcı  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29938-29948 (2013)
http://dx.doi.org/10.1364/OE.21.029938


View Full Text Article

Enhanced HTML    Acrobat PDF (2928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backed-up with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene’s damping factor is increased by lowering its electron mobility to 1000cm2/Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers.

© 2013 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: October 22, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 19, 2013
Published: November 26, 2013

Citation
Muhammad Amin, Mohamed Farhat, and Hakan Bağcı, "An ultra-broadband multilayered graphene absorber," Opt. Express 21, 29938-29948 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).
  2. S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012). [CrossRef] [PubMed]
  3. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express21, 23803–23811 (2013). [CrossRef] [PubMed]
  4. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012). [CrossRef] [PubMed]
  5. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express21, 11618–11627 (2013). [CrossRef] [PubMed]
  6. A. Andryieuski and L. Andrei, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013). [CrossRef] [PubMed]
  7. L. Huang, R. C. Dibakar, R. Suchitrai, T. R. Matthew, N. L Sheng, J. T. Antoinette, and C. Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012). [CrossRef] [PubMed]
  8. J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013). [CrossRef]
  9. Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009). [CrossRef]
  10. Y. Q. Ye, J. Yi, and H. Sailing, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27, 498–504 (2010). [CrossRef]
  11. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010). [CrossRef]
  12. Y. Ma, C. Qin, G. James, C. S. Shimul, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36, 945–947 (2011). [CrossRef] [PubMed]
  13. R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012). [CrossRef] [PubMed]
  14. R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013). [CrossRef] [PubMed]
  15. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011). [CrossRef] [PubMed]
  16. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012). [CrossRef] [PubMed]
  17. H.T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012). [CrossRef] [PubMed]
  18. L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012). [CrossRef]
  19. A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012). [CrossRef]
  20. M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013). [CrossRef] [PubMed]
  21. S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012). [CrossRef] [PubMed]
  22. Y. Pochi, Optical waves in layered media, (Wiley, 1988).
  23. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010). [CrossRef]
  24. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013). [CrossRef]
  25. Microwave, RF, and Optical Design Software, “ http://www.comsol.com/rf-module ”
  26. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  27. A. E. Siegman, Lasers, (University Science Books, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited