OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30460–30473

The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 30460-30473 (2013)
http://dx.doi.org/10.1364/OE.21.030460


View Full Text Article

Acrobat PDF (3682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode.

© 2013 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.1490) Detectors : Cameras
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(270.0270) Quantum optics : Quantum optics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 23, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 4, 2013
Published: December 4, 2013

Citation
D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, "The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera," Opt. Express 21, 30460-30473 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-30460


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995). [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995). [CrossRef] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004). [CrossRef] [PubMed]
  4. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005). [CrossRef] [PubMed]
  5. T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011). [CrossRef]
  6. G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011). [CrossRef]
  7. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013). [CrossRef]
  8. P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994). [CrossRef] [PubMed]
  9. P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996). [CrossRef] [PubMed]
  10. S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011). [CrossRef] [PubMed]
  11. J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012). [CrossRef]
  12. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013). [CrossRef] [PubMed]
  13. C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998). [CrossRef]
  14. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001). [CrossRef]
  15. A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004). [CrossRef] [PubMed]
  16. I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005). [CrossRef]
  17. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009). [CrossRef]
  18. S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010). [CrossRef]
  19. S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003). [CrossRef] [PubMed]
  20. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004). [CrossRef] [PubMed]
  21. E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express14, 13089–13094 (2006). [CrossRef] [PubMed]
  22. V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012). [CrossRef] [PubMed]
  23. M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013). [CrossRef]
  24. N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005). [CrossRef] [PubMed]
  25. M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011). [CrossRef]
  26. Y. Kang, K. Cho, J. Noh, D. L. P. Vitullo, C. Leary, and M. G. Raymer, “Remote preparation of complex spatial states of single photons and verification by two-photon coincidence experiment,” Opt. Express18, 1217–1233 (2010). [CrossRef] [PubMed]
  27. A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010). [CrossRef]
  28. F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012). [CrossRef]
  29. F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012). [CrossRef]
  30. S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012). [CrossRef]
  31. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004). [CrossRef] [PubMed]
  32. P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994). [CrossRef] [PubMed]
  33. E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008). [CrossRef]
  34. D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013). [CrossRef]
  35. C. H. Sequin, “Blooming suppression in charge coupled area imaging devices,” Bell Syst. Tech. J.51, 1923 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited