OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 30849–30858

Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging

Ali M. Fard, Paulino Vacas-Jacques, Ehsan Hamidi, Hao Wang, Robert W. Carruth, Joseph A. Gardecki, and Guillermo J. Tearney  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 30849-30858 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Owing to its superior resolution, intravascular optical coherence tomography (IVOCT) is a promising tool for imaging the microstructure of coronary artery walls. However, IVOCT does not identify chemicals and molecules in the tissue, which is required for a more complete understanding and accurate diagnosis of coronary disease. Here we present a dual-modality imaging system and catheter that uniquely combines IVOCT with diffuse near-infrared spectroscopy (NIRS) in a single dual-modality imaging device for simultaneous acquisition of microstructural and compositional information. As a proof-of-concept demonstration, the device has been used to visualize co-incident microstructural and spectroscopic information obtained from a diseased cadaver human coronary artery.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 17, 2013
Revised Manuscript: October 27, 2013
Manuscript Accepted: November 7, 2013
Published: December 6, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Ali M. Fard, Paulino Vacas-Jacques, Ehsan Hamidi, Hao Wang, Robert W. Carruth, Joseph A. Gardecki, and Guillermo J. Tearney, "Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging," Opt. Express 21, 30849-30858 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995). [CrossRef] [PubMed]
  3. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  5. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express20(18), 19612–19617 (2012). [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2006). [CrossRef] [PubMed]
  9. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008). [CrossRef] [PubMed]
  10. S. Waxman, M. I. Freilich, M. J. Suter, M. Shishkov, S. Bilazarian, R. Virmani, B. E. Bouma, and G. J. Tearney, “A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of drug-eluting stent failure,” Circ. Cardiovasc. Interv.3(2), 193–196 (2010). [CrossRef] [PubMed]
  11. C. M. Matter, M. Stuber, and M. Nahrendorf, “Imaging of the unstable plaque: how far have we got?” Eur. Heart J.30(21), 2566–2574 (2009). [CrossRef] [PubMed]
  12. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  13. T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J.152(4), 755e1–755e4 (2006). [CrossRef] [PubMed]
  14. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation107(1), 113–119 (2003). [CrossRef] [PubMed]
  15. F. D. Kolodgie, A. P. Burke, A. Farb, H. K. Gold, J. Yuan, J. Narula, A. V. Finn, and R. Virmani, “The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes,” Curr. Opin. Cardiol.16(5), 285–292 (2001). [CrossRef] [PubMed]
  16. S. Waxman, F. Ishibashi, and J. E. Muller, “Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events,” Circulation114(22), 2390–2411 (2006). [CrossRef] [PubMed]
  17. C. V. Felton, D. Crook, M. J. Davies, and M. F. Oliver, “Relation of plaque lipid composition and morphology to the stability of human aortic plaques,” Arterioscler. Thromb. Vasc. Biol.17(7), 1337–1345 (1997). [CrossRef] [PubMed]
  18. G. van Soest, E. Regar, T. P. M. Goderie, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, P. W. Serruys, and A. F. W. van der Steen, “Pitfalls in plaque characterization by OCT: Image artifacts in native coronary arteries,” JACC Cardiovasc. Imaging4(7), 810–813 (2011). [CrossRef] [PubMed]
  19. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  20. G. van Soest, T. P. M. Goderie, N. Gonzalo, S. Koljenović, G. L. J. H. van Leenders, E. Regar, P. W. Serruys, and A. F. W. van der Steen, “Imaging atherosclerotic plaque composition with intracoronary optical coherence tomography,” Neth. Heart J.17(11), 448–450 (2009). [CrossRef] [PubMed]
  21. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express4(8), 1269–1284 (2013). [CrossRef] [PubMed]
  22. G. W. Stone, A. Maehara, A. J. Lansky, B. de Bruyne, E. Cristea, G. S. Mintz, R. Mehran, J. McPherson, N. Farhat, S. P. Marso, H. Parise, B. Templin, R. White, Z. Zhang, P. W. Serruys, and PROSPECT Investigators, “A prospective natural-history study of coronary atherosclerosis,” N. Engl. J. Med.364(3), 226–235 (2011). [CrossRef] [PubMed]
  23. C. M. Gardner, H. Tan, E. L. Hull, J. B. Lisauskas, S. T. Sum, T. M. Meese, C. Jiang, S. P. Madden, J. D. Caplan, A. P. Burke, R. Virmani, J. Goldstein, and J. E. Muller, “Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system,” JACC Cardiovasc. Imaging1(5), 638–648 (2008). [CrossRef] [PubMed]
  24. S. Waxman, J. Tang, B. J. Marshik, H. Tan, K. R. Khabbaz, R. J. Connolly, T. A. Dunn, A. F. Zuluaga, S. DeJesus, J. D. Caplan, and E. J. Muller, “In vivo detection of a coronary artificial target with a near infrared spectroscopy catheter,” Am. J. Cardiol. 94, 141E-E (2004).
  25. A. F. Zuluaga and S. T. DeJesus, “Miniaturized probes for intracoronary optical spectroscopy through blood,” Am. J. Cardiol.90, 128H–129H (2002).
  26. J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol.47(8Suppl), C92–C96 (2006). [CrossRef] [PubMed]
  27. R. D. Madder, D. H. Steinberg, and R. D. Anderson, “Multimodality direct coronary imaging with combined near-infrared spectroscopy and intravascular ultrasound: Initial US experience,” Catheter. Cardiovasc. Interv.81(3), 551–557 (2013). [CrossRef] [PubMed]
  28. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt.43(1), 113–121 (2004). [CrossRef] [PubMed]
  29. H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. A. Jaffer, and G. J. Tearney, “Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo,” Nat. Med.17(12), 1680–1684 (2011). [CrossRef] [PubMed]
  30. J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express3(11), 2851–2859 (2012). [CrossRef] [PubMed]
  31. S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt.17(7), 070501 (2012). [CrossRef] [PubMed]
  32. J. K. Barton, F. Guzman, and A. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt.9(3), 618–623 (2004). [CrossRef] [PubMed]
  33. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express1(1), 186–200 (2010). [CrossRef] [PubMed]
  34. R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A4(3), 423–432 (1987). [CrossRef] [PubMed]
  35. W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” Proc. SPIE1431, 180–191 (1991). [CrossRef]
  36. S. Feng, F.-A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34(19), 3826–3837 (1995). [CrossRef] [PubMed]
  37. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  38. S. M. R. Motaghian Nezam, B. J. Vakoc, A. E. Desjardins, G. J. Tearney, and B. E. Bouma, “Increased ranging depth in optical frequency domain imaging by frequency encoding,” Opt. Lett.32(19), 2768–2770 (2007). [CrossRef] [PubMed]
  39. B. D. Goldberg, B. J. Vakoc, W.-Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express17(19), 16957–16968 (2009). [CrossRef] [PubMed]
  40. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express18(10), 9755–9764 (2010). [CrossRef] [PubMed]
  41. S. Y. Ryu, H. Y. Choi, J. Na, E. S. Choi, and B. H. Lee, “Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber,” Opt. Lett.33(20), 2347–2349 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited