OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31029–31035

3D fabrication of all-polymer conductive microstructures by two photon polymerization

Kestutis Kurselis, Roman Kiyan, Victor N. Bagratashvili, Vladimir K. Popov, and Boris N. Chichkov  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31029-31035 (2013)
http://dx.doi.org/10.1364/OE.21.031029


View Full Text Article

Enhanced HTML    Acrobat PDF (2072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

© 2013 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(160.4236) Materials : Nanomaterials
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 17, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 11, 2013
Published: December 9, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Kestutis Kurselis, Roman Kiyan, Victor N. Bagratashvili, Vladimir K. Popov, and Boris N. Chichkov, "3D fabrication of all-polymer conductive microstructures by two photon polymerization," Opt. Express 21, 31029-31035 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009). [CrossRef]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013). [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  4. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012). [CrossRef]
  5. H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999). [CrossRef]
  6. A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007). [CrossRef]
  7. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007). [CrossRef] [PubMed]
  8. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008). [CrossRef] [PubMed]
  9. W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004). [CrossRef]
  10. L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005). [CrossRef]
  11. V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003). [CrossRef]
  12. K. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci. 185(1), 29–39 (2001). [CrossRef]
  13. J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003). [CrossRef] [PubMed]
  14. C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley, 2011).
  15. S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013). [CrossRef]
  16. A. Ostendorf, M. B. Chakif, and Q. Guo, “Laser direct writing of nanocompounds,” in MRS Proceedings, (Cambridge University, 2011), pp. 19–30. [CrossRef]
  17. M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012). [CrossRef]
  18. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977). [CrossRef]
  19. A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 40(14), 2581–2590 (2001). [CrossRef] [PubMed]
  20. S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007). [CrossRef] [PubMed]
  21. D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998). [CrossRef]
  22. D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000). [CrossRef]
  23. T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007). [CrossRef]
  24. G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995). [CrossRef]
  25. J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995). [CrossRef]
  26. C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002). [CrossRef]
  27. K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009). [CrossRef]
  28. A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988). [CrossRef]
  29. Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012). [CrossRef] [PubMed]
  30. E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013). [CrossRef]
  31. G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992). [CrossRef]
  32. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011). [CrossRef] [PubMed]
  33. H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981). [CrossRef] [PubMed]
  34. J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998). [CrossRef]
  35. A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited