OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31072–31081

Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio

Fabian Duerr, Youri Meuret, and Hugo Thienpont  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31072-31081 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Including free-form optical components in imaging systems provides numerous opportunities for enhanced performance and compact, lightweight packaging. This applies especially to the use of free-form optics in off-axis imaging applications. In case of on-axis imaging, rotationally symmetric lenses are typically used, as they greatly simplify the design and manufacturing process. However, for imaging applications with high aspect ratio, free-form optics can help to provide solutions with clearly better overall imaging performance. For such cases, the ray tracing simulations in this work demonstrate superior imaging performance of basic free-form lenses in comparison to conventional rotationally symmetric lenses, each consisting of two surfaces.

© 2013 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(080.2740) Geometric optics : Geometric optical design
(080.3620) Geometric optics : Lens system design
(080.4225) Geometric optics : Nonspherical lens design

ToC Category:
Geometric Optics

Original Manuscript: October 31, 2013
Revised Manuscript: November 26, 2013
Manuscript Accepted: November 26, 2013
Published: December 9, 2013

Fabian Duerr, Youri Meuret, and Hugo Thienpont, "Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio," Opt. Express 21, 31072-31081 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rolland and K. Thompson, “Freeform optics: Evolution? no, revolution!” SPIE Newsroom (19July2012). [CrossRef]
  2. W. T. Plummer, “Unusual optics of the Polaroid SX-70 land camera,” Appl. Opt.21, 196–208 (1982). [CrossRef] [PubMed]
  3. W. T. Plummer, J. G. Baker, and J. Van Tassell, “Photographic optical systems with nonrotational aspheric surfaces,” Appl. Opt.38, 3572–3592 (1999). [CrossRef]
  4. O. Cakmakci and J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett.32, 1363–1365 (2007). [CrossRef] [PubMed]
  5. O. Cakmakci, B. Moore, H. Foroosh, and J. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16, 1583–1589 (2008). [CrossRef] [PubMed]
  6. T. Nakano and Y. Tamagawa, “Configuration of an off-axis three-mirror system focused on compactness and brightness,” Appl. Opt.44, 776–783 (2005). [CrossRef] [PubMed]
  7. J. M. Rodgers, “Catoptric optical system including concave and convex reflectors,” (1994). US Patent 5,309, 276.
  8. K. Fuerschbach, J. Rolland, and K. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19, 21919–21928 (2011). [CrossRef] [PubMed]
  9. R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).
  10. K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009). [CrossRef] [PubMed]
  11. T. Schmid, J. P. Rolland, A. Rakich, and K. P. Thompson, “Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT),” Opt. Express18, 17433–17447 (2010). [CrossRef] [PubMed]
  12. P. Benítez and J. C. Miñano, “Ultrahigh-numerical-aperture imaging concentrator,” J. Opt. Soc. Am. A14, 1988–1997 (1997). [CrossRef]
  13. J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009). [CrossRef]
  14. J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).
  15. W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).
  16. W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012). [CrossRef] [PubMed]
  17. F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,” Opt. Express20, 5576–5585 (2012). [CrossRef] [PubMed]
  18. F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces,” Opt. Express20, 10839–10846 (2012). [CrossRef] [PubMed]
  19. CODE V Reference Manual (Synopsis, 2011), chap. 18: Automatic Design in CODE V, pp. 18.1–18.50.
  20. O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).
  21. J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited