OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31105–31118

Interacting plasmonic nanostructures beyond the quasi-static limit: a “circuit” model

Xuezhi Zheng, Niels Verellen, Vladimir Volskiy, Ventsislav K. Valev, Jeremy J. Baumberg, Guy A. E. Vandenbosch, and Victor V. Moshchalkov  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31105-31118 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interaction between individual plasmonic nanoparticles plays a crucial role in tuning and shaping the surface plasmon resonances of a composite structure. Here, we demonstrate that the detailed character of the coupling between plasmonic structures can be captured by a modified “circuit” model. This approach is generally applicable and, as an example here, is applied to a dolmen-like nanostructure consisting of a vertically placed gold monomer slab and two horizontally placed dimer slabs. By utilizing the full-wave eigenmode expansion method (EEM), we extract the eigenmodes and eigenvalues for these constituting elements and reduce their electromagnetic interaction to the structures’ mode interactions. Using the reaction concept, we further summarize the mode interactions within a “coupling” matrix. When the driving voltage source imposed by the incident light is identified, an equivalent circuit model can be constructed. Within this model, hybridization of the plasmonic modes in the constituting nanostructure elements is discussed. The proposed circuit model allows the reuse of powerful circuit analysis techniques in the context of plasmonic structures. As an example, we derive an equivalent of Thévenin’s theorem in circuit theory for nanostructures. Applying the equivalent Thévenin’s theorem, the well-known Fano resonance is easily explained.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:

Original Manuscript: October 17, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 27, 2013
Published: December 10, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Xuezhi Zheng, Niels Verellen, Vladimir Volskiy, Ventsislav K. Valev, Jeremy J. Baumberg, Guy A. E. Vandenbosch, and Victor V. Moshchalkov, "Interacting plasmonic nanostructures beyond the quasi-static limit: a “circuit” model," Opt. Express 21, 31105-31118 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol.9(5), 538–544 (2005). [CrossRef] [PubMed]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  3. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A.100(23), 13549–13554 (2003). [CrossRef] [PubMed]
  4. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett.11(2), 391–397 (2011). [CrossRef] [PubMed]
  5. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett.95(9), 095504 (2005). [CrossRef] [PubMed]
  6. A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008). [CrossRef]
  7. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101(4), 043901 (2008). [CrossRef] [PubMed]
  8. V. K. Valev, A. V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O. A. Aktsipetrov, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “U-shaped switches for optical information processing at the nanoscale,” Small7(18), 2573–2576 (2011). [CrossRef] [PubMed]
  9. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett.32(11), 1438–1440 (2007). [CrossRef] [PubMed]
  10. V. K. Valev, W. Libaers, U. Zywietz, X. Zheng, M. Centini, N. Pfullmann, L. O. Herrmann, C. Reinhardt, V. Volskiy, A. V. Silhanek, B. N. Chichkov, C. Sibilia, G. A. Vandenbosch, V. V. Moshchalkov, J. J. Baumberg, and T. Verbiest, “Nanostripe length dependence of plasmon-induced material deformations,” Opt. Lett.38(13), 2256–2258 (2013). [CrossRef] [PubMed]
  11. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007). [CrossRef] [PubMed]
  12. V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “The role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy,” Opt. Express20(1), 256–264 (2012). [CrossRef] [PubMed]
  13. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  14. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  15. V. K. Valev, B. De Clercq, C. G. Biris, X. Zheng, S. Vandendriessche, M. Hojeij, D. Denkova, Y. Jeyaram, N. C. Panoiu, Y. Ekinci, A. V. Silhanek, V. Volskiy, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Distributing the optical near-field for efficient field-enhancements in nanostructures,” Adv. Mater.24(35), OP208–OP215 (2012). [PubMed]
  16. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  17. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  18. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  19. A. Alú, A. Salandrino, and N. Engheta, “Coupling of optical lumped nanocircuit elements and effects of substrates,” Opt. Express15(21), 13865–13876 (2007). [CrossRef] [PubMed]
  20. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005). [CrossRef]
  21. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B79(15), 155423 (2009). [CrossRef]
  22. T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett.10(7), 2618–2625 (2010). [CrossRef] [PubMed]
  23. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  24. F. Papoff and B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express19(22), 21432–21444 (2011). [CrossRef] [PubMed]
  25. B. Hourahine and F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol.23(8), 084002 (2012). [CrossRef]
  26. C. E. Baum, “Emerging technology for transient and broadband analysis and synthesis of antennas and scatterers,” Proc. IEEE64(11), 1598–1616 (1976). [CrossRef]
  27. G. A. E. Vandenbosch and A. R. Van de Capelle, “Mixed-potential integral expression formulation of the electric field in a stratified dielectric medium-application to the case of a probe current source,” IEEE Trans. Antennas Propag.40(7), 806–817 (1992). [CrossRef]
  28. F. J. Demuynck, G. A. E. Vandenbosch, and A. R. Van de Capelle, “The expansion wave concept–Part I: Efficient calculation of spatial Green's functions in a stratified dielectric medium,” IEEE Trans. Antennas Propag.46, 397–406 (1998). [CrossRef]
  29. Y. Schols and G. A. E. Vandenbosch, “Separation of horizontal and vertical dependencies in a surface/volume integral equation approach to model quasi 3-D structures in multilayered media,” IEEE Trans. Antennas Propag.55(4), 1086–1094 (2007). [CrossRef]
  30. G. A. E. Vandenbosch, V. Volski, N. Verellen, and V. V. Moshchalkov, “On the use of the method of moments in plasmonic applications,” Radio Sci.46(5), RS0E02 (2011). [CrossRef]
  31. V. H. Rumsey, “Reaction concept in electromagnetic theory,” Phys. Rev.94(6), 1483–1491 (1954). [CrossRef]
  32. C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits (IET, 1948).
  33. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  34. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  35. B. Gallinet and O. J. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011). [CrossRef]
  36. B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011). [CrossRef] [PubMed]
  37. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  38. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012). [CrossRef] [PubMed]
  39. A. Lovera, B. Gallinet, P. Nordlander, and O. J. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano7(5), 4527–4536 (2013). [CrossRef] [PubMed]
  40. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction (Springer, 2002).
  41. A. G. Ramm, “Mathematical foundations of the singularity and eigenmode expansion methods (SEM and EEM),” J. Math. Anal. Appl.86(2), 562–591 (1982). [CrossRef]
  42. R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993).
  43. X. Zheng, N. Verellen, V. K. Valev, V. Volskiy, D. Denkova, L. O. Herrmann, C. Blejean, J. J. Baumberg, A. V. Silhanek, G. A. E. Vandenbosch, and V. V. Moshchalkov, “ Nanoantenna modeled as N-port network: bridging surface plasmon modes and nano-circuits,” submitted (2013).
  44. J. D. Jackson, Classical Electrodynamics (John Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited