OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31138–31154

Forward and backward unidirectional scattering from plasmonic coupled wires

Ekaterina Poutrina, Alec Rose, Dean Brown, Augustine Urbas, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31138-31154 (2013)
http://dx.doi.org/10.1364/OE.21.031138


View Full Text Article

Enhanced HTML    Acrobat PDF (2351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the resonant electromagnetic response of sub-wavelength plasmonic dimers formed by two silver strips separated by a thin dielectric spacer and embedded in a uniform dielectric media. We demonstrate that the off-resonant electric and resonant, geometric shape-leveraged, magnetic polarizabilities of the dimer element can be designed to have close absolute values in a certain spectral range, resulting in a predominantly unidirectional scattering of the incident field due to pronounced magneto-electric interference. Switching between forward and backward directionality can be achieved with a single element by changing the excitation wavelength, with the scattering direction defined by the relative phases of the polarizabilities. We extend the analysis to some periodic configurations, including the specific case of a perforated metal film, and discuss the differences between the observed unidirectional scattering and the extraordinary transmission effect. The unidirectional response can be preserved and enhanced with periodic arrays of dimers and can find applications in nanoantenna devices, integrated optic circuits, sensors with nanoparticles, photovoltaic systems, or perfect absorbers; while the option of switching between forward and backward unidirectional scattering may create interesting possibilities for manipulating optical pressure forces.

© 2013 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: September 26, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 15, 2013
Published: December 10, 2013

Citation
Ekaterina Poutrina, Alec Rose, Dean Brown, Augustine Urbas, and David R. Smith, "Forward and backward unidirectional scattering from plasmonic coupled wires," Opt. Express 21, 31138-31154 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  2. T. Shegai, S Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun.2, 481 (2012).
  3. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators,” Nat. Commun.3, 692 (2012). [CrossRef] [PubMed]
  4. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–932 (2010). [CrossRef] [PubMed]
  6. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–315 (2010). [CrossRef]
  7. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett.104, 026802 (2010). [CrossRef] [PubMed]
  8. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349, (2009). [CrossRef] [PubMed]
  9. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102, 233901, (2009). [CrossRef] [PubMed]
  10. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009). [CrossRef]
  11. Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9, 4383–4386, (2009). [CrossRef] [PubMed]
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  13. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–OP304, (2012). [PubMed]
  14. S. H. A. Lavasani and T. Pakizeh, “Color-switched directional ultracompact optical nanoantennas,” J. Opt. Soc. Am. B29, 1361–1366 (2012). [CrossRef]
  15. G. H. Rui, R. L. Nelson, and Q. W. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett.36, 4533–4535 (2011). [CrossRef] [PubMed]
  16. V. D. Miljkovic, T. Shegai, M. Käll, and P. Johansson, “Mode- specific directional emission from hybridized particle-on-a-film plasmons,” Opt. Express19, 12856–12864 (2011). [CrossRef]
  17. C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron.44, 435–447 (2008). [CrossRef]
  18. T. Pakizeh, “Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths,” J. Opt. Soc. Am. B29, 2446–2452 (2012). [CrossRef]
  19. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011). [CrossRef] [PubMed]
  20. T. Shegai, V. D. Miljkovic, K. Bao, H. X. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broad-band light emission from supported plasmonic nanowires,” Nano Lett.11, 706–711 (2011). [CrossRef] [PubMed]
  21. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]
  22. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express17, 2224–2234 (2009). [CrossRef] [PubMed]
  23. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010). [CrossRef] [PubMed]
  24. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20, 20376–20386 (2012). [CrossRef] [PubMed]
  25. A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A86, 033816 (2012). [CrossRef]
  26. N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103, 07E901 (2008). [CrossRef]
  27. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4186 (2000). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light-scattering by agglomerates – coupled electric and magnetic dipole method,” Langmuir10, 2533–2546 (1994). [CrossRef]
  30. B. Garcia-Camara, F. Moreno, F. Gonzalez, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express18, 10001–10015 (2010). [CrossRef] [PubMed]
  31. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007). [CrossRef]
  32. A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?,” J. Nanophotonics4, 041590 (2010), and references therein. [CrossRef]
  33. B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt Lett.36, 728–730 (2011). [CrossRef]
  34. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20, 20599–20604 (2012). [CrossRef] [PubMed]
  35. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011). [CrossRef]
  36. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. Gonzalez, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics5, 053512 (2011). [CrossRef]
  37. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  38. S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys.84, 2658–2667(1986). [CrossRef]
  39. S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: a physical reformulation of the coupled dipoles method,” Opt. Lett.12, 10–12 (1987). [CrossRef] [PubMed]
  40. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30, 3198–3201 (2005). [CrossRef] [PubMed]
  41. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3359 (2005). [CrossRef]
  42. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15, 3333–3341 (2007). [CrossRef] [PubMed]
  43. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B (R)73, 041101 (2006). [CrossRef]
  44. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett.31, 3620–3622 (2006). [CrossRef] [PubMed]
  45. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon.1, 41–48 (2007). [CrossRef]
  46. K. Guven, M. D. Caliskan, and E. Ozbay, “Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation,” Opt. Express14, 8685–8693 (2006). [CrossRef] [PubMed]
  47. A. L. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett.8, 2171–2175 (2008). [CrossRef] [PubMed]
  48. S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett.94, 201111 (2009). [CrossRef]
  49. N. T. Tung, V. T. T. Thuy, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Left-handed transmission in a simple cut-wire pair structure,” J. Appl. Phys.107, 023530 (2010). [CrossRef]
  50. T. F. Gündoǧdu, K. Güen, M. Gökkavas, C. M. Soukoulis, and E. Özbay, “A Planar metamaterial with dual-band double-negative response at EHF,” J. Sel. Top. Quant. Electron.16, 376–379 (2010). [CrossRef]
  51. A. Ourir and H. H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98, 113505 (2011). [CrossRef]
  52. M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B85, 205110 (2012). [CrossRef]
  53. D. P. Brown, M. A. Walker, A. M. Urbas, A. V. Kildishev, S. Xiao, and V. P. Drachev, “Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping,” Opt. Express20, 23082–23087 (2012). [CrossRef] [PubMed]
  54. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18, 6191–6204 (2010). [CrossRef] [PubMed]
  55. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  56. H. C. Van De Hulst, Light Scatering by Small Nanoparticles (Dover, 1981).
  57. D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65, 195104 (2002). [CrossRef]
  58. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  59. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83, 2845–2848 (1999). [CrossRef]
  60. U. Schroter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58, 15419–15421 (1998). [CrossRef]
  61. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev.48, 928–936 (1935). [CrossRef]
  62. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express20, 11005–11013 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited