OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31155–31165

High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang  »View Author Affiliations


Optics Express, Vol. 21, Issue 25, pp. 31155-31165 (2013)
http://dx.doi.org/10.1364/OE.21.031155


View Full Text Article

Enhanced HTML    Acrobat PDF (4937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, conformal surface plasmon (CSP) structure has been successfully proposed that could support spoof surface plasmon polaritons (SPPs) on corrugated metallic strip with ultrathin thickness [Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013)]. Such concept provides a flexible, conformal, and ultrathin wave-guiding element, very promising for application of plasmonic devices, and circuits in the frequency ranging from microwave to mid-infrared. In this work, we investigated the dispersions and field patterns of high-order modes of spoof SPPs along CSP structure of thin metal film with corrugated edge of periodic array of grooves, and carried out direct measurement on the transmission spectrum of multi-band of surface wave propagation at microwave frequency. It is found that the mode number and mode bands are mainly determined by the depth of the grooves, providing a way to control the multi-band transmission spectrum. We have also experimentally verified the high-order mode spoof SPPs propagation on curved CSP structure with acceptable bending loss. The multi-band propagation of spoof surface wave is believed to be applicable for further design of novel planar devices such as filters, resonators, and couplers, and the concept can be extended to terahertz frequency range.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: September 16, 2013
Revised Manuscript: December 4, 2013
Manuscript Accepted: December 4, 2013
Published: December 10, 2013

Citation
Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang, "High-order modes of spoof surface plasmonic wave transmission on thin metal film structure," Opt. Express 21, 31155-31165 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett.30(17), 2209–2211 (2005). [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  7. W. Rotman, “A study of single-surface corrugated guides,” Proc. IRE39, 952–959, (1951). [CrossRef]
  8. R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag.2, 71–81 (1954).
  9. A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theor. Tech.8(1), 30–61 (1960). [CrossRef]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  11. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  12. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005). [CrossRef] [PubMed]
  13. F. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95(23), 233901 (2005). [CrossRef] [PubMed]
  14. A. P. Hibbins, E. Hendry, M. J. Lockyear, and J. R. Sambles, “Prism coupling to ‘designer’ surface plasmons,” Opt. Express16(25), 20441–20447 (2008). [CrossRef] [PubMed]
  15. L. F. Shen, X. D. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  16. A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79(23), 233104 (2009). [CrossRef]
  17. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010). [CrossRef] [PubMed]
  18. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B78(23), 235426 (2008). [CrossRef]
  19. W. S. Zhao, O. M. Eldaiki, R. X. Yang, and Z. L. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18(20), 21498–21503 (2010). [CrossRef] [PubMed]
  20. N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys.43(13), 135302 (2010). [CrossRef]
  21. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008). [CrossRef]
  22. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99(11), 111904 (2011). [CrossRef]
  23. Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express19(22), 21189–21198 (2011). [CrossRef] [PubMed]
  24. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  25. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett.98(22), 221901 (2011). [CrossRef]
  26. E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett.99(5), 051108 (2011). [CrossRef]
  27. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013). [CrossRef] [PubMed]
  28. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013). [CrossRef]
  29. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013). [CrossRef]
  30. T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface Plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagnetics Res.8, 91–102 (2009). [CrossRef]
  31. X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys.105(1), 013704 (2009). [CrossRef]
  32. B. C. Wadell, Transmission Line Design Handbook (Artech House, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited