OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 25 — Dec. 16, 2013
  • pp: 31678–31689

High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices

N. Gruhler, C. Benz, H. Jang, J.-H. Ahn, R. Danneau, and W. H. P. Pernice  »View Author Affiliations

Optics Express, Vol. 21, Issue 25, pp. 31678-31689 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hybrid circuits combining traditional nanophotonic components with carbon-based materials are emerging as a promising platform for optoelectronic devices. We demonstrate such circuits by integrating single-layer graphene films with silicon nitride waveguides as a new architecture for broadband optical operation. Using high-quality microring resonators and Mach-Zehnder interferometers with extinction ratios beyond 40 dB we realize flexible circuits for phase-sensitive detection on chip. Hybrid graphene-photonic devices are fabricated via mechanical transfer and lithographic structuring, allowing for prolonged light-matter interactions. Our approach holds promise for studying optical processes in low-dimensional physical systems and for realizing electrically tunable photonic circuits.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: August 19, 2013
Manuscript Accepted: December 3, 2013
Published: December 13, 2013

N. Gruhler, C. Benz, H. Jang, J.-H. Ahn, R. Danneau, and W. H. P. Pernice, "High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices," Opt. Express 21, 31678-31689 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  4. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008). [CrossRef] [PubMed]
  5. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11(6), 2396–2399 (2011). [CrossRef] [PubMed]
  6. R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett.94(24), 243114 (2009). [CrossRef]
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  8. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A.102(30), 10451–10453 (2005). [CrossRef] [PubMed]
  9. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, “High-frequency self-aligned graphene transistors with transferred gate stacks,” Proc. Natl. Acad. Sci. U. S. A.109(29), 11588–11592 (2012). [CrossRef] [PubMed]
  10. F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B82(24), 245422 (2010). [CrossRef]
  11. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008). [CrossRef] [PubMed]
  12. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101(19), 196405 (2008). [CrossRef] [PubMed]
  13. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  14. T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71(5), 1318–1324 (2002). [CrossRef]
  15. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56(4), 281–284 (2007). [CrossRef]
  16. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008). [CrossRef] [PubMed]
  17. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano4(1), 43–48 (2010). [CrossRef] [PubMed]
  18. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010). [CrossRef] [PubMed]
  19. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett.80(6), 1088 (2002). [CrossRef]
  20. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett.101(11), 111110 (2012). [CrossRef] [PubMed]
  21. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  22. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett.12(6), 2773–2777 (2012). [CrossRef] [PubMed]
  23. B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun.4, 1811 (2013). [CrossRef] [PubMed]
  24. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  25. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846–1848 (1974). [CrossRef]
  26. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4–6), 453–458 (2004). [CrossRef]
  27. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano5(9), 6916–6924 (2011). [CrossRef] [PubMed]
  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  29. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008).
  30. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett.11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  31. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  32. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  33. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  34. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  35. J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2007). [CrossRef]
  36. M. Gorodetsky, A. Pryamikov, and V. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000). [CrossRef]
  37. J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  38. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  39. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010). [CrossRef] [PubMed]
  40. J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology24(18), 185202 (2013). [CrossRef] [PubMed]
  41. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B29(6), 1490–1496 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited