OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32207–32216

Conversion of broadband energy to narrowband emission through double-sided metamaterials

Maowen Song, Honglin Yu, Chenggang Hu, Mingbo Pu, Zuojun Zhang, Jun Luo, and Xiangang Luo  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32207-32216 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, an energy harvesting/re-radiating device is proposed to realize high efficiency energy conversion in the solar thermo-photovoltaic system. Such device consists of double-sided metamaterials which are assembled by a broadband absorber working in the major solar spectrum, and a back-by-back narrowband emitter working in the infrared band. It is theoretically proved that most of solar light (from 0.28 μm to 4 μm) can be collected, and then, converted to a sharp emission at the maximal response energy level (~0.4 eV) of photovoltaic cells in thermal equilibrium state. The impact of high temperature (as large as 966 K) and the parasitic radiation on the performance is discussed and compensated by geometric optimization.

© 2013 Optical Society of America

OCIS Codes
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials
(290.6815) Scattering : Thermal emission

ToC Category:

Original Manuscript: September 16, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 13, 2013
Published: December 19, 2013

Maowen Song, Honglin Yu, Chenggang Hu, Mingbo Pu, Zuojun Zhang, Jun Luo, and Xiangang Luo, "Conversion of broadband energy to narrowband emission through double-sided metamaterials," Opt. Express 21, 32207-32216 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  2. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685 (2003). [CrossRef]
  3. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol.18(5), S151–S157 (2003). [CrossRef]
  4. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express17(17), 15145–15159 (2009). [CrossRef] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  6. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399 (2004). [CrossRef]
  7. M. Tsai, T. Chuang, C. Meng, Y. Chang, and S. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006). [CrossRef]
  8. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007). [CrossRef] [PubMed]
  9. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009). [CrossRef]
  10. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B72(7), 075127 (2005). [CrossRef]
  11. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008). [CrossRef]
  12. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008). [CrossRef] [PubMed]
  13. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express17(25), 22800–22812 (2009). [CrossRef] [PubMed]
  14. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006). [CrossRef]
  15. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  16. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express19(18), 17413–17420 (2011). [CrossRef] [PubMed]
  17. Thermophotovoltaic from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Thermophotovoltaic .
  18. X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater.25(29), 3994–4000 (2013). [CrossRef] [PubMed]
  19. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun.269(2), 411–417 (2007). [CrossRef]
  20. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011). [CrossRef] [PubMed]
  21. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009). [CrossRef] [PubMed]
  22. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the Terahertz regime,” Opt. Express20(23), 25513–25519 (2012). [CrossRef] [PubMed]
  23. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B.27(3), 030498 (2010).
  24. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011). [CrossRef] [PubMed]
  25. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008). [CrossRef]
  26. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012). [CrossRef]
  27. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012). [CrossRef] [PubMed]
  28. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett.100(10), 103506 (2012). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constant of Solids (Academic, New York, 1985).
  30. W. S. Martin, E. M. Duchane, and H. Blau, “Measurement of optical constant at high temperatures,” J. Opt. Soc. Am.55(12), 1623 (1965). [CrossRef]
  31. L. N. Aksyotuv, “Temperature dependence of the optical constants of tungsten and gold,” J. Opt. Soc. Am. A.55(12), 1623–1627 (1965).
  32. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE6273, 6273K (2006). [CrossRef]
  33. UQG OPTICS DATASHEET SCHOTT @ BOROFLOAT. http://www.uqgoptics.com/materials_commercial_schott_borofloat.aspx .
  34. X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express19(10), 9401–9407 (2011). [CrossRef] [PubMed]
  35. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110(1), 014909 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited