OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32668–32679

Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves

Tavakol Nazari, Sahar Hosseinzadeh Kassani, Reza Khazaeinezhad, and Kyunghwan Oh  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32668-32679 (2013)
http://dx.doi.org/10.1364/OE.21.032668


View Full Text Article

Enhanced HTML    Acrobat PDF (1701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report enhanced optical transmission (EOT) through a hexagonal aperture surrounded by polygonal segmented grooves to explore its unique polarization dependence. Effects of light polarization on EOT through the hexagonal aperture were systematically investigated for three types of grooves: concentric hexagonal grooves, linear segmented grooves and wedge segmented grooves. Significant increase in EOT was observed for the polarization directed along the groove axis compared to the other orthogonal polarization, which can be further applied to polarization dependent photonic devices.

© 2013 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 3, 2013
Published: December 24, 2013

Citation
Tavakol Nazari, Sahar Hosseinzadeh Kassani, Reza Khazaeinezhad, and Kyunghwan Oh, "Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves," Opt. Express 21, 32668-32679 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express14(22), 10410–10425 (2006). [CrossRef] [PubMed]
  2. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011). [CrossRef] [PubMed]
  3. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004). [CrossRef] [PubMed]
  4. D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).
  5. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008). [CrossRef] [PubMed]
  6. K. Y. Kim, A. V. Goncharenko, J. S. Hong, and K. R. Chen, “Near-field characterization on light emanated from subwavelength plasmonic double slit of finite length,” J. Opt. Soc. Korea15, 196–201 (2011).
  7. H. Nasari and M. S. Abrishamian, “Active focusing of light in plasmonic lens via Kerr effect,” J. Opt. Soc. Korea16, 305–312 (2012).
  8. J. H. Lee, S. K. Hong, and S. W. Nam, “Cooperative spontaneous emission from nanocrystals to a surface plasmon polariton in a metallic nanowire,” J. Opt. Soc. Korea15, 407–414 (2011).
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  10. F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011). [CrossRef] [PubMed]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  12. M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express20(24), 26798–26805 (2012). [CrossRef] [PubMed]
  13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010). [CrossRef] [PubMed]
  14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003). [CrossRef] [PubMed]
  15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006). [CrossRef]
  16. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  17. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  18. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006). [CrossRef] [PubMed]
  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004). [CrossRef]
  20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008). [CrossRef] [PubMed]
  21. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008). [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  23. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008). [CrossRef] [PubMed]
  24. FDTD Lumerical Solutions Inc, www.lumerical.com .
  25. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002). [CrossRef]
  26. J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).
  27. S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express20(5), 4856–4870 (2012). [CrossRef] [PubMed]
  28. T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005). [CrossRef]
  29. E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt.44(32), 6898–6904 (2005). [CrossRef] [PubMed]
  30. P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006). [CrossRef]
  31. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  32. G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).
  33. N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007). [CrossRef]
  34. E. C. Kinzel and X. Xu, “Extraordinary infrared transmission through a periodic bowtie aperture array,” Opt. Lett.35(7), 992–994 (2010). [CrossRef] [PubMed]
  35. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005). [CrossRef]
  36. Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010). [CrossRef]
  37. X. Jiao and S. Blair, “Polarization multiplexed optical bullseye antennas,” Plasmonics7(1), 39–46 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited