OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32680–32689

A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers

Mohammed Shafiqul Hai, Meer Nazmus Sakib, and Odile Liboiron-Ladouceur  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32680-32689 (2013)
http://dx.doi.org/10.1364/OE.21.032680


View Full Text Article

Enhanced HTML    Acrobat PDF (2890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a Germanium-on-Silicon balanced photodetector (BPD) with integrated biasing capacitors is demonstrated for highly compact monolithic 100 Gb/s coherent receivers or 25 Gbaud front-end receivers for differential or quadrature phase shift keying. The balanced photodetector has a bandwidth of approximately 16.2 GHz at a reverse bias of −4.5 V. The balanced photodetector exhibits a common mode rejection ratio (CMRR) of 30 dB. For balanced detection of return-to-zero (RZ) differential phase shift keying (DPSK) signal, the photodetector has a sensitivity of −6.95 dBm at the BER of 10−12. For non-return-to-zero (NRZ) on off keying (OOK) signal, the measured BER is 1.0´10−12 for a received power of −1.65 dBm at 25 Gb/s and 9.9´10−5 for −0.34 dBm at 30 Gb/s. The total footprint area of the monolithic front-end receiver is less than 1 mm2. The BPD is packaged onto a ceramic substrate with two DC and one RF connectors exhibits a bandwidth of 15.9 GHz.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.0230) Optical devices : Optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 7, 2013
Published: December 24, 2013

Citation
Mohammed Shafiqul Hai, Meer Nazmus Sakib, and Odile Liboiron-Ladouceur, "A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers," Opt. Express 21, 32680-32689 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Fischer, R. Ludwig, L. Molle, M. Noelle, A. Beling, C. Leonhardt, A. Matiss, A. Umbach, R. Kunkel, H.-G. Bach, and C. Schubert, “Integrated Coherent Receiver Modules for 100G Ethernet and Beyond,” Proceedings ITG Symposium of Photonic Networks, 12, 1–5 (2011).
  2. u2t photonics, http://www.u2t.com/products/all-products/item/cprv1220a?category_id=6 , coherent receiver module CPRV1220A.
  3. Y. Painchaud, M. Pelletier, M. Poulin, F. Pelletier, C. Latrasse, G. Robidoux, S. Savard, J. Gagné, V. Trudel, M. Picard, P. Poulin, P. Sirois, F. D'Amours, D. Asselin, S. Paquet, C. Paquet, M. Cyr, and M. Guy, “Ultra-Compact Coherent Receiver Based on Hybrid Integration on Silicon,” in Proc. Optical Fiber Communication Conference and Exposition (OFC) and The National Fiber Optic Engineers Conference (NFOEC), OMJ.2,1–3 (2013). [CrossRef]
  4. C. Doerr, P. Winzer, Y. Chen, S. Chandrasekhar, M. Rasras, L. Chen, T. Liow, K. Ang, and G. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol.28(4), 520–525 (2010). [CrossRef]
  5. C. Doerr, L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011). [CrossRef]
  6. u2t photonics, http://www.u2t.com/products/photodetectors/item/bpdv2xx0r?category_id=2 , balanced photodetector module BPD2XX0R.
  7. T. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  8. Optoelectronic Systems Integration in Silicon (OpSIS), http://opsisfoundry.org/
  9. S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications,” IEEE J. Sel. Top. Quantum Electron.12(6), 1489–1502 (2006). [CrossRef]
  10. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  11. M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express20(7), 7101–7111 (2012). [CrossRef] [PubMed]
  12. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Lim, T. Liow, S. Teo, G. Lo, and M. Hochberg, “A 25 Gb/s Silicon Photonics Platform,” Preprint at http://arxiv.org/abs/1203.0767 (2012).
  13. K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1258–1267 (2010). [CrossRef]
  14. H. Pan, S. Assefa, W. M. J. Green, D. M. Kuchta, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. W. Baks, S. M. Shank, and Y. A. Vlasov, “High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier,” Opt. Express20(16), 18145–18155 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited