OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2733–2740

High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy

C. Tessarek, G. Sarau, M. Kiometzis, and S. Christiansen  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2733-2740 (2013)
http://dx.doi.org/10.1364/OE.21.002733


View Full Text Article

Enhanced HTML    Acrobat PDF (2445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators
(250.1500) Optoelectronics : Cathodoluminescence
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Integrated Optics

History
Original Manuscript: July 19, 2012
Revised Manuscript: September 29, 2012
Manuscript Accepted: December 19, 2012
Published: January 29, 2013

Citation
C. Tessarek, G. Sarau, M. Kiometzis, and S. Christiansen, "High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy," Opt. Express 21, 2733-2740 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys.2, 81–90 (2006). [CrossRef]
  3. G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, “Room-temperature polariton lasers based on GaN microcavities,” Appl. Phys. Lett.81, 412–414 (2002). [CrossRef]
  4. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98, 126405 (2007). [CrossRef] [PubMed]
  5. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous wave lasing in GaN/InGaN microdisks,” Nature Photon.1, 61–64 (2007). [CrossRef]
  6. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93, 103903 (2004). [CrossRef] [PubMed]
  7. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater.23, 2199–2204 (2011). [CrossRef] [PubMed]
  8. T. Kouno, K. Kishino, and M. Sakai, “Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy,” IEEE J. Quantum Electron.47, 1565–1570 (2011). [CrossRef]
  9. C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 596–600 (2012). [CrossRef]
  10. N. Grandjean, J. Massies, and M. Leroux, “Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers,” Appl. Phys. Lett.69, 2071–2073 (1996). [CrossRef]
  11. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97, 151909 (2010). [CrossRef]
  12. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, “Polarity and itsiInfluence on growth mechanism during MOVPE growth of GaN sub-micrometer rods,” Cryst. Growth Des.11, 1573–1577 (2011). [CrossRef]
  13. R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal-organic vapor phase epitaxy,” Nanotech.21, 015602 (2010). [CrossRef]
  14. C. Cheze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Khegias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, “Direct comparison of catalyst-free and catalyst-induced GaN nanowires,” Nano Res.3, 528–536 (2010). [CrossRef]
  15. M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97, 061301 (2005). [CrossRef]
  16. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A67, 023807 (2003). [CrossRef]
  17. M. J. Bergmann, Ü. Özgür, H. C. Casey, H. O. Everitt, and J. F. Muth, “Ordinary and extraordinary refractive indices for AlGaN epitaxial layers,” Appl. Phys. Lett.75, 67–69 (1999). [CrossRef]
  18. B. C. Joshi, M. Mathew, B. C Joshi, D. Kumar, and C. Dhanavantri, “Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapor deposition for high electron mobility transistor applications,” Pranama - J. Phys.74, 135–141 (2010). [CrossRef]
  19. C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive change and optical absorption in wurtzite InN and GaN: Full-band approach,” Phys. Rev. B81, 155206 (2010). [CrossRef]
  20. G. Cywinski, R. Kudrawiec, W. Rzodkiewicz, M. Krysko, E. Litwin-Staszewska, B. Lucznik, J. Misiewicz, and C. Skierbiszewki, “Doping-induced contrast in the refractive index for GaInN/GaN structures at telecommunication wavelengths,” Appl. Phys. Express2, 111001 (2009). [CrossRef]
  21. E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett.71, 921–923 (1997). [CrossRef]
  22. T. Nobis, A. Rahm, C. Czekalla, M. Lorenz, and M. Grundmann, “Optical whispering gallery modes in dodecagonal zinc oxide microcrystals,” Superlatt. Microstr.42, 333–336 (2007). [CrossRef]
  23. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A72, 063806 (2005). [CrossRef]
  24. A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009). [CrossRef]
  25. S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111, 071101 (2012). [CrossRef]
  26. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80, 4057–4059 (2002). [CrossRef]
  27. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B72, 205318 (2005). [CrossRef]
  28. D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4, 3270–3276 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited