OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2850–2861

Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2850-2861 (2013)
http://dx.doi.org/10.1364/OE.21.002850


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we experimentally demonstrate a high-speed free-space reconfigurable card-to-card optical interconnect architecture employing MEMS-based steering mirror arrays for simple and efficient link selection. A printed-circuit-board (PCB) based interconnect module is developed and 3 × 10 Gb/s reconfigurable card-to-card optical interconnect with a bit-error-rate (BER) of ~10−6 for up to 30 cm is realized using a 250 μm pitch-size micro-lens array. In addition, due to the usage of MEMS steering-mirrors, larger lenses can be employed at the receiver side for collecting stronger optical signal power to increase the achievable interconnect range or to improve the BER performance. Experimental results show that with 1-mm diameter lenses the interconnect distance can exceed 80 cm.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.4650) Optics in computing : Optical interconnects
(200.2605) Optics in computing : Free-space optical communication

ToC Category:
Access Networks and LAN

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 8, 2012
Published: January 30, 2013

Citation
Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh, "Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects," Opt. Express 21, 2850-2861 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2850


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Borkar, “Design perspectives on 22 nm CMOS and beyond,” in Proceedings of 46th ACM/IEEE Design Automation Conference (San Francisco, California, 2009), 93–94.
  2. S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today9(6), 20–25 (2006). [CrossRef]
  3. X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. M. Olsen, H. Lee, L.-H. Pan, T. B. Hook, J.-P. Han, J.-E. Park, M.-H. Na, and K. Rim, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE. Trans. Electron Devices58(2), 335–342 (2011). [CrossRef]
  4. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron.16(5), 1376–1385 (2010). [CrossRef]
  5. D. V. Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. R. Romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron.16, 1363–1375 (2010).
  6. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express20(11), 12035–12039 (2012). [CrossRef] [PubMed]
  7. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009). [CrossRef]
  8. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritther, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop.49(4.5), 755–775 (2005). [CrossRef]
  9. “Luxtera’s silicon photonics technology enables 100Gbps data center interconnects,” http://www.luxtera.com/20100601225/luxtera-advances-optical-technology-to-support-100gbps-interconnects-for-datacenters.html .
  10. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol.30(4), 448–457 (2012). [CrossRef]
  11. L. A. Buckman-Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel optical interconnects >100 Gb/s,” J. Lightwave Technol.22(9), 2055–2063 (2004). [CrossRef]
  12. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schr¨odinger, A. Schild, and H.-M. Rein, “120-Gb/s VCSEL-based parallel-optical interconnect and custom 120- Gb/s testing station,” J. Lightwave Technol.22(9), 2200–2212 (2004). [CrossRef]
  13. F. E. Doany, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. Baks, C. Jahnes, F. Libsch, and C. L. Schow, “Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC” in Proceedingsof Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(OFC/NFOEC,Los Angeles, California, 2012), PDP5D.9.
  14. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008). [CrossRef]
  15. C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, and J. A. Kash, “A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates,” J. Lightwave Technol.27(7), 915–929 (2009). [CrossRef]
  16. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol.24(5), 1989–1997 (2006). [CrossRef]
  17. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE88(6), 829–837 (2000). [CrossRef]
  18. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express14(15), 6823–6836 (2006). [CrossRef] [PubMed]
  19. L. C. Andrews and R. L. Phillips, inLaser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham, Washington, 1998.
  20. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12(4), 544–554 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited