OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2903–2912

Hybrid hollow core fibers with embedded wires as THz waveguides

Jessienta Anthony, Rainer Leonhardt, and Alexander Argyros  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2903-2912 (2013)
http://dx.doi.org/10.1364/OE.21.002903


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We experimentally demonstrate broadband terahertz (THz) pulse propagation through hollow core fibers with two or four embedded Indium wires in a THz time-domain spectroscopy (THz-TDS) setup. The hybrid mode is guided in the air core region with power attenuation coefficients of 0.3 cm−1 and 0.5 cm−1 for the two-wire and four-wire configurations, respectively.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 15, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 21, 2013
Published: January 30, 2013

Citation
Jessienta Anthony, Rainer Leonhardt, and Alexander Argyros, "Hybrid hollow core fibers with embedded wires as THz waveguides," Opt. Express 21, 2903-2912 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  3. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000). [CrossRef]
  4. L.-J. Chen, H.-W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef] [PubMed]
  5. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000). [CrossRef]
  6. C. Ponseca, E. Estacio, R. Pobre, G. Diwa, G. de los Reyes, S. Ono, H. Murakami, N. Sarukura, K. Aosaki, Y. Sakane, H. Sato, A. Argyros, and M. C. J. Large, “Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region,” J. Opt. Soc. Am. B26(9), A95–A100 (2009). [CrossRef]
  7. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  8. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011). [CrossRef]
  9. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.24(20), 1431–1433 (1999). [CrossRef] [PubMed]
  10. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010). [CrossRef] [PubMed]
  11. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  12. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008). [CrossRef] [PubMed]
  13. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  14. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011). [CrossRef] [PubMed]
  15. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  16. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006). [CrossRef]
  17. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009). [CrossRef] [PubMed]
  18. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express13(26), 10815–10822 (2005). [CrossRef] [PubMed]
  19. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009). [CrossRef]
  20. D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010). [CrossRef]
  21. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010). [CrossRef]
  22. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008). [CrossRef] [PubMed]
  23. MODE Solutions, www.lumerical.com .
  24. R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973). [CrossRef]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  26. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12(10), 4036–4046 (1975). [CrossRef]
  27. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009). [CrossRef]
  28. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).
  29. L. J. Chu and W. L. Barrow, “Electromagnetic waves in hollow metal tubes or rectangular cross section,” Proc. I.R.E. 26, 1520–1555 (1938).
  30. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited