OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2978–2986

Low bend loss waveguides enable compact, efficient 3D photonic chips

Alexander Arriola, Simon Gross, Nemanja Jovanovic, Ned Charles, Peter G. Tuthill, Santiago M. Olaizola, Alexander Fuerbach, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2978-2986 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel method to fabricate low bend loss femtosecond-laser written waveguides that exploits the differential thermal stabilities of laser induced refractive index modifications. The technique consists of a two-step process; the first involves fabricating large multimode waveguides, while the second step consists of a thermal post-annealing process, which erases the outer ring of the refractive index profile, enabling single mode operation in the C-band. By using this procedure we report waveguides with sharp bends (down to 16.6 mm radius) and high (80%) normalized throughputs. This procedure was used to fabricate an efficient 3D, photonic device known as a “pupil-remapper” with negligible bend losses for the first time. The process will also allow for complex chips, based on 10's - 100's of waveguides to be realized in a compact foot print with short fabrication times.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.1260) Other areas of optics : Astronomical optics
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: November 23, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 11, 2013
Published: January 31, 2013

Alexander Arriola, Simon Gross, Nemanja Jovanovic, Ned Charles, Peter G. Tuthill, Santiago M. Olaizola, Alexander Fuerbach, and Michael J. Withford, "Low bend loss waveguides enable compact, efficient 3D photonic chips," Opt. Express 21, 2978-2986 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3(6), 535–544 (2009). [CrossRef]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  4. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  5. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011). [CrossRef]
  6. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012). [CrossRef] [PubMed]
  7. R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007), doi:. [CrossRef]
  8. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17(15), 12546–12554 (2009). [CrossRef] [PubMed]
  9. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011), doi:. [CrossRef] [PubMed]
  10. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Neil, G. Robertson, G. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427(1), 806–815 (2012). [CrossRef]
  11. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express17(3), 1963–1969 (2009). [CrossRef] [PubMed]
  12. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011). [CrossRef]
  13. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  14. N. Jovanovic, S. Gross, C. Miese, A. Fuerbach, J. Lawrence, and M. J. Withford, “Direct laser written multimode waveguides for astronomical applications,” Proc. SPIE7739, 773923, 773923-8 (2010), http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1346699 . [CrossRef]
  15. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  16. N. Charles, N. Jovanovic, S. Gross, P. Stewart, B. Norris, J. O’Byrne, J. S. Lawrence, M. J. Withford, and P. G. Tuthill, “Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides,” Appl. Opt.51(27), 6489–6497 (2012). [CrossRef] [PubMed]
  17. H. E. Hagy, “Fine annealing of optical glass for low residual stress and refractive index homogeneity,” Appl. Opt.7(5), 833–835 (1968). [CrossRef] [PubMed]
  18. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett.93(2), 023112 (2008), doi:. [CrossRef]
  19. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012). [CrossRef] [PubMed]
  20. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express20(15), 17029–17043 (2012). [CrossRef]
  21. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited