OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3001–3009

Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation

Ken Kashiwagi, Hiroyuki Ishizu, Yuichiro Kodama, and Takashi Kurokawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3001-3009 (2013)
http://dx.doi.org/10.1364/OE.21.003001


View Full Text Article

Enhanced HTML    Acrobat PDF (2884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method of background component suppression of synthesized pulses for flatly broadened supercontinuum (SC) generation. An adaptive pulse shaping in frequency domain achieved a 26 dB contrast between pulse center and background level in auto-correlation trace by combining two fitness functions during feedback-controlled pulse shaping. The pulse was used as a SC pump, and the spectral peak of the SC at the pump wavelength was suppressed by 5 dB using the combination scheme. Simulation results show that the phase spectra control is required to be within ± π/100 rad to suppress the spectral peak below 3 dB. The results show that adaptive pulse shaping is required to improve SC flatness due to the small mismatch tolerance.

© 2013 OSA

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 29, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 21, 2013
Published: January 31, 2013

Citation
Ken Kashiwagi, Hiroyuki Ishizu, Yuichiro Kodama, and Takashi Kurokawa, "Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation," Opt. Express 21, 3001-3009 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007). [CrossRef]
  2. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express12(2), 317–324 (2004). [CrossRef] [PubMed]
  3. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24(6), 2311–2317 (2006). [CrossRef]
  4. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006). [CrossRef] [PubMed]
  5. S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007). [CrossRef]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008). [CrossRef] [PubMed]
  7. T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010). [CrossRef]
  8. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  9. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010). [CrossRef] [PubMed]
  10. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20(6), 6631–6643 (2012). [CrossRef] [PubMed]
  11. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997). [CrossRef]
  12. K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006). [CrossRef]
  13. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008). [CrossRef]
  14. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009). [CrossRef]
  15. K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009). [CrossRef]
  16. K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011). [CrossRef]
  17. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009). [CrossRef]
  18. D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007). [CrossRef]
  19. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012). [CrossRef]
  20. K. Kashiwagi, H. Ishizu, Y. Mizuno, and T. Kurokawa, “Optical pulse compression with waveform reshaping using pulse synthesizer and cascaded fiber pair,” in Proceedings of Conference on Lasers and Electro-Optics / Pacific Rim, Technical Digest (CD) (Optical Society of America, 2011), paper 3240-CT-6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited