OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3010–3020

Optical cavity modes of a single crystalline zinc oxide microsphere

Rakesh Singh Moirangthem, Pi-Ju Cheng, Paul Ching-Hang Chien, Buu Trong Huynh Ngo, Shu-Wei Chang, Chung-Hao Tien, and Yia-Chung Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3010-3020 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A detailed study on the optical cavity modes of zinc oxide microspheres under the optical excitation is presented. The zinc oxide microspheres with diameters ranging from 1.5 to 3.0 µm are prepared using hydrothermal growth technique. The photoluminescence measurement of a single microsphere shows prominent resonances of whispering gallery modes at room temperature. The experimentally observed whispering gallery modes in the photoluminescence spectrum are compared with theoretical calculations using analytical and finite element methods in order to clarify resonance properties of these modes. The comparison between theoretical analysis and experiment suggests that the dielectric constant of the ZnO microsphere is somewhat different from that for bulk ZnO. The sharp resonances of whispering gallery modes in zinc oxide microspheres cover the entire visible window. They may be utilized in realizations of optical resonators, light emitting devices, and lasers for future chip integrations with micro/nano optoelectronic circuits, and developments of optical biosensors.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(250.5230) Optoelectronics : Photoluminescence
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Integrated Optics

Original Manuscript: November 29, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 22, 2013
Published: January 31, 2013

Rakesh Singh Moirangthem, Pi-Ju Cheng, Paul Ching-Hang Chien, Buu Trong Huynh Ngo, Shu-Wei Chang, Chung-Hao Tien, and Yia-Chung Chang, "Optical cavity modes of a single crystalline zinc oxide microsphere," Opt. Express 21, 3010-3020 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res.4(11), 1013–1098 (2011). [CrossRef]
  2. Z. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties,” J. Nanosci. Nanotechnol.5(10), 1561–1573 (2005). [CrossRef] [PubMed]
  3. D. J. Rogers, F. H. Teherani, V. E. Sandana, and M. Razeghi, “ZnO thin films and nanostructures for emerging optoelectronic applications,” Proc. SPIE7605, 76050K, 76050K-11 (2010). [CrossRef]
  4. A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem.22(14), 6526–6535 (2012). [CrossRef]
  5. X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol.6(2), 103–106 (2011). [CrossRef] [PubMed]
  6. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008). [CrossRef] [PubMed]
  7. Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, “Recent advances in ZnO-based light-emitting diodes,” IEEE Trans. Eletron. Dev.57(1), 26–41 (2010). [CrossRef]
  8. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  9. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011). [CrossRef] [PubMed]
  10. D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc.131(6), 2125–2127 (2009). [CrossRef] [PubMed]
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  12. H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an X-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C115(44), 21971–21980 (2011). [CrossRef]
  13. H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and Photocatalysis,” J. Phys. Chem. C116(30), 16182–16190 (2012). [CrossRef]
  14. G. X. Zhu, Y. J. Liu, H. Xu, Y. Chen, X. P. Shen, and Z. Xu, “Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties,” CrystEngComm14(2), 719–725 (2011). [CrossRef]
  15. X. Lu, H. Zhang, Y. Ni, Q. Zhang, and J. Chen, “Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors,” Biosens. Bioelectron.24(1), 93–98 (2008). [CrossRef] [PubMed]
  16. B. Q. Cao, K. Sakai, D. Nakamura, I. A. Palani, H. B. Gong, H. Y. Xu, M. Higashihata, and T. Okada, “Stimulated optical emission from ZnO nanobelts grown with a simple carbothermal evaporation method,” J. Phys. Chem. C115(5), 1702–1707 (2011). [CrossRef]
  17. N. P. Herring, K. AbouZeid, M. B. Mohamed, J. Pinsk, and M. S. El-Shall, “Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis,” Langmuir27(24), 15146–15154 (2011). [CrossRef] [PubMed]
  18. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012). [CrossRef]
  19. Y. H. Tseng, M. H. Liu, Y. W. Kuo, P. Chen, C. T. Chen, Y. F. Chen, and C. Y. Mou, “Biomimetic ZnO plate twin-crystals periodical arrays,” Chem. Commun. (Camb.)48(26), 3215–3217 (2012). [CrossRef] [PubMed]
  20. G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009). [CrossRef]
  21. H. Dong, Z. Chen, L. Sun, W. Xie, H. H. Tan, J. Lu, C. Jagadish, and X. Shen, “Single-crystalline hexagonal ZnO microtube optical resonator,” J. Mater. Chem.20(26), 5510–5515 (2010). [CrossRef]
  22. N. Wang, X. Cao, Q. Wu, R. Zhang, L. Wang, P. Yin, and L. Guo, “Hexagonal ZnO bipyramids: synthesis, morphological evolution, and optical properties,” J. Phys. Chem. C113(52), 21471–21476 (2009). [CrossRef]
  23. S. Cho, J. W. Jang, S. H. Lee, J. S. Lee, and K. H. Lee, “A method for modifying the crystalline nature and texture of ZnO nanostructure surfaces,” Cryst. Growth Des.11(12), 5615–5620 (2011). [CrossRef]
  24. S. S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir26(9), 6762–6766 (2010). [CrossRef] [PubMed]
  25. Q. Li, K. Gao, Z. Hu, W. Yu, N. Xu, J. Sun, and J. Wu, “Photoluminescence and lasing properties of catalyst-free ZnO nanorod arrays fabricated by pulsed laser deposition,” J. Phys. Chem. C116(3), 2330–2335 (2012). [CrossRef]
  26. D. J. Gargas, H. Gao, H. Wang, and P. Yang, “High quantum efficiency of band-edge emission from ZnO nanowires,” Nano Lett.11(9), 3792–3796 (2011). [CrossRef] [PubMed]
  27. D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys.99(9), 093112 (2006). [CrossRef]
  28. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4(6), 3270–3276 (2010). [CrossRef] [PubMed]
  29. Y. H. Yang, Y. Zhang, N. W. Wang, C. X. Wang, B. J. Li, and G. W. Yang, “ZnO nanocone: application in fabrication of the smallest whispering gallery optical resonator,” Nanoscale3(2), 592–597 (2011). [CrossRef] [PubMed]
  30. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. (Deerfield Beach Fla.)23(19), 2199–2204 (2011). [CrossRef] [PubMed]
  31. M. Wang, Y. Zhou, Y. Zhang, E. J. Kim, S. H. Hahn, and S. G. Seong, “Near-infrared photoluminescence from ZnO,” Appl. Phys. Lett.100(10), 101906 (2012). [CrossRef]
  32. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga-Pérez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B247(6), 1282–1293 (2010). [CrossRef]
  33. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057 (2002). [CrossRef]
  34. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008). [CrossRef] [PubMed]
  35. S. W. Chang, “Full frequency-domain approach to reciprocal microlasers and nanolasers-perspective from Lorentz reciprocity,” Opt. Express19(22), 21116–21134 (2011). [CrossRef] [PubMed]
  36. Y. G. Wang, S. W. Chang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “Room temperature lasing with high group index in metal-coated GaN nanoring,” Appl. Phys. Lett.99(25), 251111 (2011). [CrossRef]
  37. S. Cho, J. W. Jang, A. Jung, S. H. Lee, J. Lee, J. S. Lee, and K. H. Lee, “Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures,” Langmuir27(1), 371–378 (2011). [CrossRef] [PubMed]
  38. S. Spillane, “Fiber-coupled ultra-high-Q microresonators for nonlinear and quantum optics,” Ph.D. thesis, California Inst. of Technol. (2004).
  39. S. Schiller, “Asymptotic expansion of morphological resonance frequencies in Mie scattering,” Appl. Opt.32(12), 2181–2185 (1993). [CrossRef] [PubMed]
  40. M. Bass, Handbook of Optics 2nd Ed., Vol. 2. (McGraw-Hill, United States of America, 1994).
  41. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010). [CrossRef]
  42. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of application of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005).
  43. R. Cuscó, E. A. Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M. J. Callahan, “Temperature dependence of Raman scattering in ZnO,” Phys. Rev. B75(16), 165202 (2007). [CrossRef]
  44. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett.68(3), 403–405 (1996). [CrossRef]
  45. D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004). [CrossRef]
  46. R. Schmidt-Grund, N. Ashkenov, M. M. Schubert, W. Czakai, D. Faltermeier, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Temperature‐dependence of the refractive index and the optical transitions at the fundamental band‐gap of ZnO,” AIP Conf. Proc.893, 271–272 (2007). [CrossRef]
  47. R. Schmidt-Grund, H. Hilmer, A. Hinkel, C. Sturm, B. Rheinlander, V. Gottschalch, M. Lange, J. Zuniga-Perez, and M. Grundmann, “Two-dimensional confined photonic wire resonators- strong light-matter coupling,” Phys. Status Solidi B247(6), 1351–1364 (2010). [CrossRef]
  48. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express15(8), 4452–4473 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited