OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3031–3042

Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer

Yanping Xu, Ping Lu, Zengguang Qin, Jeremie Harris, Farhana Baset, Ping Lu, Vedula Ravi Bhardwaj, and Xiaoyi Bao  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3031-3042 (2013)
http://dx.doi.org/10.1364/OE.21.003031


View Full Text Article

Enhanced HTML    Acrobat PDF (5128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Sensors

History
Original Manuscript: December 5, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 22, 2013
Published: January 31, 2013

Citation
Yanping Xu, Ping Lu, Zengguang Qin, Jeremie Harris, Farhana Baset, Ping Lu, Vedula Ravi Bhardwaj, and Xiaoyi Bao, "Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer," Opt. Express 21, 3031-3042 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003). [CrossRef]
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  3. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007). [CrossRef] [PubMed]
  4. F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express16(17), 12967–12972 (2008). [CrossRef] [PubMed]
  5. W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett.21(2), 76–78 (2009). [CrossRef]
  6. Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009). [CrossRef]
  7. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  8. W. Tao, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009). [CrossRef]
  9. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B27(3), 370–374 (2010). [CrossRef]
  10. H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010). [CrossRef] [PubMed]
  11. F. Pang, H. Liu, H. Guo, Y. Liu, X. Zeng, N. Chen, Z. Chen, and T. Wang, “In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor,” IEEE Sens. J.11(10), 2395–2400 (2011). [CrossRef]
  12. P. Lu and Q. Chen, “Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications,” Opt. Lett.36(2), 268–270 (2011). [CrossRef] [PubMed]
  13. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011). [CrossRef] [PubMed]
  14. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express20(14), 15406–15417 (2012). [CrossRef] [PubMed]
  15. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express20(10), 11109–11120 (2012). [CrossRef] [PubMed]
  16. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012). [CrossRef] [PubMed]
  17. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and L. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett.15(12), 1737–1739 (2003). [CrossRef]
  18. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W.-T. Han, “Design of a trenched bend insensitive single mode optical fiber using spot size definitions,” Opt. Express16(18), 13545–13551 (2008). [CrossRef] [PubMed]
  19. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express17(12), 10350–10363 (2009). [CrossRef] [PubMed]
  20. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express17(22), 20155–20166 (2009). [CrossRef] [PubMed]
  21. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009). [CrossRef]
  22. P. R. Watekar, S. Ju, and W.-T. Han, “Optimized design of trenched optical fiber for ultralow bending loss at 5 mm of bending diameter,” Appl. Opt.50(25), E97–E101 (2011). [CrossRef]
  23. M.-Y. Chen and Y.-K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol.29(15), 2216–2222 (2011). [CrossRef]
  24. D. Boivin, L.-A. de Montmorillon, L. Provost, and P. Sillard, “Coherent multipath interference in bend-insensitive fibers,” IEEE Photon. Technol. Lett.21(24), 1891–1893 (2009). [CrossRef]
  25. N. H. Vu, J.-T. Kim, E.-S. Kim, C.-H. Jung, K.-G. Lee, and I.-K. Hwang, “Ultralow bending loss fibers with higher-order mode strippers,” Opt. Express18(19), 19456–19461 (2010). [CrossRef] [PubMed]
  26. T. Matsui, K. Nakajima, Y. Goto, T. Shimizu, and T. Kurashima, “Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics,” J. Lightwave Technol.29(17), 2499–2505 (2011). [CrossRef]
  27. A. Martin, R. Badcock, C. Nightingale, and G. F. Fernando, “A novel optical fiber-based strain sensor,” IEEE Photon. Technol. Lett.9(7), 982–984 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited