OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3083–3090

TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor

Mingshun Jiang, Qiu-Shun Li, Jun-Nan Wang, Zhongwei Jin, Qingmei Sui, Yaohong Ma, Jianguo Shi, Faye Zhang, Lei Jia, Wei-Guo Yao, and Wen-Fei Dong  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3083-3090 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a novel TiO2 nanoparticle thin film coated optical fiber Fabry-Perot (F-P) sensor had been developed for refractive index (RI) sensing by monitoring the shifts of the fringe contrast in the reflectance spectra. Using in situ liquid phase deposition approach, the TiO2 nanoparticle thin film could be formed on the fiber surface in a controlled fashion. The optical properties of as-prepared F-P sensors were investigated both theoretically and experimentally. The results indicated that the RI sensitivity of F-P sensors could be effectively improved after the deposition of nanoparticle thin-films. It was about 69.38 dB/RIU, which was 2.6 times higher than that of uncoated one. The linear RI measurement range was also extended from 1.333~1.457 to 1.333~1.8423. More importantly, its optical properties exhibited the unique temperature-independent performance. Therefore, owing to these special optical properties, the TiO2 nanoparticle thin film coated F-P sensors have great potentials in medical diagnostics, food quality testing, environmental monitoring, biohazard detection and homeland security, even at elevated temperature.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

ToC Category:

Original Manuscript: December 6, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 17, 2013
Published: January 31, 2013

Mingshun Jiang, Qiu-Shun Li, Jun-Nan Wang, Zhongwei Jin, Qingmei Sui, Yaohong Ma, Jianguo Shi, Faye Zhang, Lei Jia, Wei-Guo Yao, and Wen-Fei Dong, "TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor," Opt. Express 21, 3083-3090 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011). [CrossRef] [PubMed]
  2. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011). [CrossRef]
  3. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005). [CrossRef]
  4. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]
  5. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011). [CrossRef] [PubMed]
  6. Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B27(3), 370–374 (2010). [CrossRef]
  7. Y. Hibino, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section, ” IEEE. Photonics J.2(2), 152–157 (2010). [CrossRef]
  8. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996). [CrossRef] [PubMed]
  10. B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011). [CrossRef]
  11. M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express17(20), 17976–17982 (2009). [CrossRef] [PubMed]
  12. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002). [CrossRef]
  13. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).
  14. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  15. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Fiber Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry–Perot Interference,” J. Lightwave Technol.28(19), 2799–2803 (2010). [CrossRef]
  16. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  17. Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express18(15), 15844–15852 (2010). [CrossRef] [PubMed]
  18. Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285(5), 521–526 (2012). [CrossRef]
  19. Z. G. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt.51(16), 3424–3430 (2012). [CrossRef] [PubMed]
  20. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011). [CrossRef]
  21. R. B. Charters, S. E. Staines, and R. P. Tatam, “In-line fiber-optic components using Langmuir-Blodgett films,” Opt. Lett.19(23), 2036–2038 (1994). [CrossRef] [PubMed]
  22. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “Fiber-optic chemical sensing with Langmuir-Blodgett overlay waveguides,” Appl. Opt.38(36), 7370–7374 (1999). [CrossRef] [PubMed]
  23. E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).
  24. Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011). [CrossRef]
  25. Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009). [CrossRef]
  26. E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009). [CrossRef]
  27. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited