OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3145–3151

Grain size dependence of surface plasmon enhanced photoluminescence

Xiaoying Xu, Mitsuru Funato, Yoichi Kawakami, Koichi Okamoto, and Kaoru Tamada  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3145-3151 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoluminescence (PL) in the InGaN quantum well based light-emitting diodes (LED) is greatly mediated through the coupling with the Surface Plasmons (SPs) at the interface of the sputtered Ag film. SPs coupled PL is independently tuned through controlling the grain size of the sputtered Ag films. The grain size of ~50 nm exhibits the maximum light extraction efficiency (LEE) at the wavelength of 460 nm. This grain size agrees with the periodic lattice constant of the grating structure in the calculation, where the momentum mismatch between the SPs and the radiative light can be compensated.

© 2013 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.5770) Optics at surfaces : Roughness
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

Original Manuscript: July 25, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: December 3, 2012
Published: February 1, 2013

Xiaoying Xu, Mitsuru Funato, Yoichi Kawakami, Koichi Okamoto, and Kaoru Tamada, "Grain size dependence of surface plasmon enhanced photoluminescence," Opt. Express 21, 3145-3151 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  2. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express18(20), 21322–21329 (2010). [CrossRef] [PubMed]
  3. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface Plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005). [CrossRef]
  4. T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E. K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett.95(11), 111112 (2009). [CrossRef]
  5. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008). [CrossRef]
  6. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66(15), 153305 (2002). [CrossRef]
  7. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004). [CrossRef] [PubMed]
  8. C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011). [CrossRef]
  9. L.-W. Jang, T. Sahoo, D.-W. Jeon, M. Kim, J.-W. Jeon, D.-S. Jo, M.-K. Kim, Y.-T. Yu, A. Y. Polyakov, and I.-H. Lee, “Quantum efficiency control of InGaN/GaN multi-quantum-well structures using Ag/SiO2 core-shell nanoparticles,” Appl. Phys. Lett.99(25), 251114 (2011). [CrossRef]
  10. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. D. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011). [CrossRef]
  11. L.-W. Jang, D.-W. Jeon, T. Sahoo, D.-S. Jo, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, J.-H. Song, A. Y. Polyakov, and I.-H. Lee, “Localized surface Plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles,” Opt. Express20(3), 2116–2123 (2012). [CrossRef] [PubMed]
  12. L.-W. Jang, J.-W. Ju, D.-W. Jeon, J.-W. Park, A. Y. Polyakov, S.-J. Lee, J.-H. Baek, S.-M. Lee, Y.-H. Cho, and I.-H. Lee, “Enhanced light output of InGaN/GaN blue light emitting diodes with Ag nano-particles embedded in nano-needle layer,” Opt. Express20(6), 6036–6041 (2012). [CrossRef] [PubMed]
  13. C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys.101(3), 033113 (2007). [CrossRef]
  14. M. Jamshidnejad, I. Kazeminejad, and A. Razeghizadeh, “Simulation of silver thin films’ growth and influence of deposition rate on final grain size under angle flux and standard situation,” Int. Nano Lett.1(1), 59–61 (2011).
  15. Z. Rakocevic, R. Petrovic, and S. Strbac, “Surface roughness of ultra-thin silver films sputter deposited on a glass,” J. Microsc.232(3), 595–600 (2008). [CrossRef] [PubMed]
  16. J. M. Delgado, J. M. Orts, and A. Rodes, “A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies,” Electrochim. Acta52(14), 4605–4613 (2007). [CrossRef]
  17. K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron.15(4), 1199–1209 (2009). [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  19. D. Edward, Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited