OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3161–3169

UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor

Yan Chen, Jing Wang, Chunmeng Liu, Jinke Tang, Xiaojun Kuang, Mingmei Wu, and Qiang Su  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3161-3169 (2013)
http://dx.doi.org/10.1364/OE.21.003161


View Full Text Article

Enhanced HTML    Acrobat PDF (1824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient near-infrared (NIR) phosphor LiSrPO4:Eu2+, Pr3+ is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu2+ can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr3+ between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu2+ with high oscillator strength. Eu2+/Pr3+ may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Solar Energy

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: February 1, 2013

Citation
Yan Chen, Jing Wang, Chunmeng Liu, Jinke Tang, Xiaojun Kuang, Mingmei Wu, and Qiang Su, "UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor," Opt. Express 21, 3161-3169 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006). [CrossRef]
  2. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009). [CrossRef]
  3. K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009). [CrossRef]
  4. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008). [CrossRef] [PubMed]
  5. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989). [CrossRef]
  6. T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012). [CrossRef]
  7. Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012). [CrossRef]
  8. H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012). [CrossRef]
  9. J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012). [CrossRef]
  10. A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011). [CrossRef]
  11. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009). [CrossRef]
  12. G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979). [CrossRef]
  13. Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006). [CrossRef]
  14. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010). [CrossRef] [PubMed]
  15. Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010). [CrossRef]
  16. O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002). [CrossRef]
  17. M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem.23(1-2), 147–154 (1978). [CrossRef]
  18. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009). [CrossRef]
  19. Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited