OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3243–3252

Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs

Jun Deng, Sajid Hussain, Vanga Sudheer Kumar, Wei Jia, Ching Eng Png, Lim Soon Thor, Andrew A. Bettiol, and Aaron J. Danner  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3243-3252 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the Fano resonance in a free-standing LiNbO3 photonic crystal slab is demonstrated. We present a numerical analysis and experimental measurements with free space illumination where the dependence of slab thickness, radius of air holes and lattice types are investigated. The unique property of polarization dependence for LiNbO3 photonic crystal slabs is also analyzed, and we show that the transmission spectra exhibit significant sensitivity (~25nm) to polarization. A monolithic free-standing LiNbO3 photonic crystal slab was fabricated using ion beam enhanced etching (IBEE) technology. Measurement results of the reflection spectra agree with the numerical analysis.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3730) Integrated optics : Lithium niobate
(220.4880) Optical design and fabrication : Optomechanics
(260.1440) Physical optics : Birefringence
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 10, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 18, 2013
Published: February 1, 2013

Jun Deng, Sajid Hussain, Vanga Sudheer Kumar, Wei Jia, Ching Eng Png, Lim Soon Thor, Andrew A. Bettiol, and Aaron J. Danner, "Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs," Opt. Express 21, 3243-3252 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010). [CrossRef]
  2. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004). [CrossRef] [PubMed]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  4. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  5. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012). [CrossRef]
  6. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003). [CrossRef] [PubMed]
  7. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett.28(19), 1763–1765 (2003). [CrossRef] [PubMed]
  8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009). [CrossRef]
  9. S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express20(6), 6306–6315 (2012). [CrossRef] [PubMed]
  10. S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007). [CrossRef]
  11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000). [CrossRef]
  13. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974). [CrossRef]
  14. E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005). [CrossRef]
  15. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996). [CrossRef]
  16. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express18(6), 6064–6070 (2010). [CrossRef] [PubMed]
  17. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett.21(13), 940–942 (1996). [CrossRef] [PubMed]
  18. Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express18(25), 26569–26582 (2010). [CrossRef] [PubMed]
  19. O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012). [CrossRef]
  20. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005). [CrossRef]
  21. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010). [CrossRef]
  22. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001). [CrossRef]
  23. G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010). [CrossRef]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  25. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005). [CrossRef]
  26. S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976). [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited