OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3279–3286

Optical isolation with epsilon-near-zero metamaterials

Arthur R. Davoyan, Ahmed M. Mahmoud, and Nader Engheta  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3279-3286 (2013)
http://dx.doi.org/10.1364/OE.21.003279


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest a principle for isolation of circularly polarized waves in magnetically active extreme-parameter metamaterials. Using theoretical analysis and numerical simulations, we show that metamaterials with extreme parameters, such as epsilon-near-zero materials (ENZ), when merged with magneto-optical materials, become transparent for forward circularly polarized waves of a given handedness and opaque for backward propagating waves of the same handedness. We theoretically study two possible implementations of such hybrid materials: (1) the case of metal-dielectric stacks; and (2) rectangular waveguide near its cut-off frequency. We prove that these structures can be utilized as compact isolators for circularly polarized waves.

© 2013 OSA

OCIS Codes
(230.3240) Optical devices : Isolators
(260.5430) Physical optics : Polarization
(260.2065) Physical optics : Effective medium theory

ToC Category:
Metamaterials

History
Original Manuscript: November 16, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: January 21, 2013
Published: February 1, 2013

Citation
Arthur R. Davoyan, Ahmed M. Mahmoud, and Nader Engheta, "Optical isolation with epsilon-near-zero metamaterials," Opt. Express 21, 3279-3286 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009). [CrossRef] [PubMed]
  2. V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992). [CrossRef]
  3. L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294. [CrossRef]
  4. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007). [CrossRef] [PubMed]
  5. E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008). [CrossRef]
  6. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011). [CrossRef]
  7. Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012). [CrossRef]
  8. M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012). [CrossRef]
  9. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006). [CrossRef] [PubMed]
  11. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008). [CrossRef]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010). [CrossRef] [PubMed]
  13. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008). [CrossRef] [PubMed]
  14. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009). [CrossRef] [PubMed]
  15. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67, 717754 (2004). [CrossRef]
  16. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007). [CrossRef]
  17. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010). [CrossRef] [PubMed]
  18. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995). [CrossRef]
  19. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010). [CrossRef]
  20. I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011). [CrossRef]
  21. K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact non-reciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett.36, 4254–4256 (2011). [CrossRef] [PubMed]
  22. D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998). [CrossRef]
  23. F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007). [CrossRef] [PubMed]
  24. W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012). [CrossRef]
  25. P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009). [CrossRef]
  26. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007). [CrossRef] [PubMed]
  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011). [CrossRef]
  28. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).
  29. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004). [CrossRef] [PubMed]
  30. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  32. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  33. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008). [CrossRef] [PubMed]
  34. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006). [CrossRef] [PubMed]
  35. A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007). [CrossRef]
  36. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008). [CrossRef]
  37. B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012). [CrossRef] [PubMed]
  38. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006). [CrossRef]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972). [CrossRef]
  40. CST Microwave Studio at www.cst.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (750 KB)      QuickTime
» Media 2: MOV (434 KB)      QuickTime
» Media 3: MOV (774 KB)      QuickTime
» Media 4: MOV (952 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited