OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3445–3462

Ground-state cooling for a trapped atom using cavity-induced double electromagnetically induced transparency

Zhen Yi, Wen-ju Gu, and Gao-xiang Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3445-3462 (2013)
http://dx.doi.org/10.1364/OE.21.003445


View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a cooling scheme for a trapped atom using the phenomenon of cavity-induced double electromagnetically induced transparency (EIT), where the atom comprising of four levels in tripod configuration is confined inside a high-finesse optical cavity. By exploiting one cavity-induced EIT, which involves one cavity photon and two laser photons, carrier transition can be eliminated due to the quantum destructive interference of excitation paths. Heating process originated from blue-sideband transition mediated by cavity field can also be prohibited due to the destructive quantum interference with the additional transition between the additional ground state and the excited state. As a consequence, the trapped atom can be cooled to the motional ground state in the leading order of the Lamb-Dicke parameters. In addition, the cooling rate is of the same order of magnitude as that obtained in the cavity-induced single EIT scheme.

© 2013 OSA

OCIS Codes
(270.4180) Quantum optics : Multiphoton processes
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 16, 2013
Published: February 4, 2013

Citation
Zhen Yi, Wen-ju Gu, and Gao-xiang Li, "Ground-state cooling for a trapped atom using cavity-induced double electromagnetically induced transparency," Opt. Express 21, 3445-3462 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3445


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl Inst. Stand. Technol.103259–328 (1998). [CrossRef]
  2. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A62, 042305 (2000). [CrossRef]
  3. E. Buks and B. Yurke, “Mass detection with a nonlinear nanomechanical resonator,” Phys. Rev. E74, 046619 (2006). [CrossRef]
  4. J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, “Laser-Cooled-Atomic Frequency Standard,” Phys. Rev. Lett.54, 1000–1003 (1985). [CrossRef] [PubMed]
  5. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser Cooling to the Zero-Point Energy of Motion,” Phys. Rev. Lett.62, 403–406 (1989). [CrossRef] [PubMed]
  6. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, “Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy,” Phys. Rev. Lett.75, 4011–4014 (1995). [CrossRef] [PubMed]
  7. G. Morigi, J. Eschner, and C. H. Keitel, “Ground State Laser Cooling Using Electromagnetically Induced Transparency,” Phys. Rev. Lett.85, 4458–4461 (2000). [CrossRef] [PubMed]
  8. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, and H. Ritsch, “Cavity-Induced Atom Cooling in the Strong Coupling Regime,” Phys. Rev. Lett.79, 4974–4977 (1997). [CrossRef]
  9. V. Vuletić and S. Chu, “Laser Cooling of Atoms, Ions, or Molecules by Coherent Scattering,” Phys. Rev. Lett.84, 3787–3790 (2000). [CrossRef]
  10. P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, New York) (1994).
  11. P. Domokos and H. Ritsch, “Mechanical effects of light in optical resonators,” J. Opt. Soc. Am. B20, 1098–1130 (2003). [CrossRef]
  12. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature428, 50–52 (2004). [CrossRef] [PubMed]
  13. D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L. Chuang, “Cavity Sideband Cooling of a Single Trapped Ion,” Phys. Rev. Lett.103, 103001 (2009). [CrossRef] [PubMed]
  14. M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature465, 755–758 (2010). [CrossRef] [PubMed]
  15. A. Reiserer, C. Nölleke, S. Ritter, and G. Rempe, “Ground-state cooling of a single atom at the center of an optical cavity,” arXiv:1212.5295v1 (2012).
  16. G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de Vivie-Riedle, “Cavity Cooling of Internal Molecular Motion,” Phys. Rev. Lett.99, 073001 (2007). [CrossRef] [PubMed]
  17. M. Kowalewski, G. Morigi, P. W. H. Pinkse, and R. de Vivie-Riedle, “Cavity cooling of translational and ro-vibrational motion of molecules: ab initio-based simulations for OH and NO,” Appl. Phys. B89, 459–467 (2007). [CrossRef]
  18. S. Rebić, A. S. Parkins, and S. M. Tan, “Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency,” Phys. Rev. A65, 063804 (2002). [CrossRef]
  19. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett.23, 295–297 (1998). [CrossRef]
  20. G. Nikoghosyan and M. Fleischhauer, “Photon-Number Selective Group Delay in Cavity Induced Transparency,” Phys. Rev. Lett.105, 013601 (2010). [CrossRef] [PubMed]
  21. M. Bienert and G. Morigi, “Cavity cooling of a trapped atom using electromagnetically induced transparency,” New J. Phys.14, 023002 (2012). [CrossRef]
  22. J. Evers and C. H. Keitel, “Double-EIT ground-state laser coupling without bue-sideband heating,” Europhys. Lett.68, 370–376 (2004). [CrossRef]
  23. J. Cerrillo, A. Retzker, and M. B. Plenio, “Fast and Robust Laser Cooling of Trapped Systems,” Phys. Rev. Lett.104, 043003 (2010). [CrossRef] [PubMed]
  24. S. Zhang, C. W. Wu, and P. X. Chen, “Dark-state laser cooling of a trapped ion using standing waves,” Phys. Rev. A85, 053420 (2012). [CrossRef]
  25. S. Zippilli and G. Morigi, “Mechanical effects of optical resonators on driven trapped atoms: Ground-state cooling in a high-finesse cavity,” Phys. Rev. A72, 053408 (2005). [CrossRef]
  26. T. Kampschulte, W. Alt, S. Manz, M. Martinez-Dorantes, R. Reimann, S. Yoon, D. Meschede, M. Bienert, and G. Morigi, “EIT-control of single-atom motion in an optical cavity,” arXiv:1212.3814v1 (2012).
  27. M. D. Lukin, S. F. Yelin, M. Fleichhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A603225–3228 (1999). [CrossRef]
  28. C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A65043805 (2002). [CrossRef]
  29. T. Kampschulte, W. Alt, S. Brakhane, M. Eckstein, R. Reimann, A. Widera, and D. Meschede, “Optical Control of the Refractive Index of a Single Atom,” Phys. Rev. Lett.105153603 (2010). [CrossRef]
  30. J.-H. Li, J.-B. Liu, A.-X. Chen, and Ch.-Ch. Qi, “Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium,” Phys. Rev. A74033816 (2006). [CrossRef]
  31. Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A67, 013811 (2003). [CrossRef]
  32. S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys.58, 699–739 (1986). [CrossRef]
  33. F. Schmidt-Kaler, J. Eschner, G. Morigi, C. F. Roos, D. Leibfried, A. Mundt, and R. Blatt, “Laser cooling with electromagnetically induced transparency: Application to trapped samples of ions or neutral atoms,” Appl. Phys. B73, 807–814 (2001). [CrossRef]
  34. J. Javanainen, M. Lindberg, and S. Stenholm, “Laser cooling of trapped ions: dynamics of the final stages,” J. Opt. Soc. Am. B1, 111–115 (1984). [CrossRef]
  35. J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, “Laser cooling of trapped ions in a standing wave,” Phys. Rev. A46, 2668–2681 (1992). [CrossRef] [PubMed]
  36. J. S. Peng and G. X. Li, Introduction to Modern Quantum Optics (Singapore: World Scientific) (1998).
  37. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge1997).
  38. Z. Yi, W. J. Gu, and G. X. Li, “Sideband cooling of atoms with the help of an auxiliary transition,” Phys. Rev. A86, 055401 (2012). [CrossRef]
  39. P. Rabl, “Cooling of mechanical motion with a two-level system: The high-temperature regime,” Phys. Rev. B82, 165320 (2010). [CrossRef]
  40. H. J. Kimble, in Cavity Quantum Electrodynamics, ed. P. R. Berman, (Academic Press, New York) (1994).
  41. P. F. Zhang, Y. Q. Guo, Zh. H. Li, Y. C. Zhang, Y. F. Zhang, J. J. Du, G. Li, J. M. Wang, and T. C. Zhang, “Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM10 cavity mode,” Phys. Rev. A83, 031804(R) (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited