OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3486–3491

Bends and splitters in graphene nanoribbon waveguides

Xiaolong Zhu, Wei Yan, N. Asger Mortensen, and Sanshui Xiao  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3486-3491 (2013)
http://dx.doi.org/10.1364/OE.21.003486


View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory to qualitatively interpret the behavior observed in our simulation. Our results pave a promising way to realize ultra-compact devices operating in the terahertz region.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Integrated Optics

History
Original Manuscript: December 18, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: February 4, 2013

Citation
Xiaolong Zhu, Wei Yan, N. Asger Mortensen, and Sanshui Xiao, "Bends and splitters in graphene nanoribbon waveguides," Opt. Express 21, 3486-3491 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005). [CrossRef] [PubMed]
  3. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012). [CrossRef]
  5. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012). [CrossRef] [PubMed]
  6. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009). [CrossRef] [PubMed]
  7. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011). [CrossRef] [PubMed]
  8. K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008). [CrossRef] [PubMed]
  9. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008). [CrossRef]
  10. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008). [CrossRef]
  11. M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  12. S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012). [CrossRef] [PubMed]
  13. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012). [CrossRef] [PubMed]
  14. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011). [CrossRef] [PubMed]
  15. F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012). [CrossRef]
  16. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012). [CrossRef]
  17. A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011). [CrossRef]
  18. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012). [CrossRef]
  19. E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007). [CrossRef]
  20. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007). [CrossRef]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  22. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  24. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29, 1069–1071 (2004). [CrossRef] [PubMed]
  25. S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010). [CrossRef]
  26. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996). [CrossRef] [PubMed]
  27. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).
  28. S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005). [CrossRef]
  29. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005). [CrossRef]
  30. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16, 16314–16325 (2008). [CrossRef] [PubMed]
  31. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012). [PubMed]
  32. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited