OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3501–3515

Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator

Siping Liu, Jiahua Li, Rong Yu, and Ying Wu  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3501-3515 (2013)
http://dx.doi.org/10.1364/OE.21.003501


View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the entanglement generation between two nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a high-Q counterpropagating twin whispering-gallery modes (WGMs) of a microtoroidal resonator. For looking into the degree and dynamics of the entanglement, we calculate the concurrence using the microscopic master equation approach. The influences of the coupling strength between the WGMs (or the size of the two spherical NV centers), the distance between two NV centers, the frequency detuning between the NV center and microresonator, and the initial state of the system on the dynamics of concurrence are discussed in detail. It is found that the maximum entanglement between the two NV centers can be created by properly adjusting these controllable system parameters. Our results may provide further insight into future solid-state cavity quantum electrodynamics (CQED) system for quantum information engineering.

© 2013 OSA

OCIS Codes
(160.2220) Materials : Defect-center materials
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 10, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 25, 2013
Published: February 4, 2013

Citation
Siping Liu, Jiahua Li, Rong Yu, and Ying Wu, "Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator," Opt. Express 21, 3501-3515 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3501


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London)390, 575–579 (1997). [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  3. T. Di, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, “Quantum teleportation of an arbitrary superposition of atomic Dicke states,” Phys. Rev. A71, 062308 (2005). [CrossRef]
  4. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett.85, 2392–2395 (2000). [CrossRef] [PubMed]
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, UK, 2000).
  6. C. H. Bennett and D. P. Divincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000). [CrossRef]
  7. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett.74, 4091–4094 (1995). [CrossRef] [PubMed]
  8. S. B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett.95, 080502 (2005). [CrossRef] [PubMed]
  9. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997). [CrossRef]
  10. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997). [CrossRef]
  11. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London)414, 413–418 (2001). [CrossRef]
  12. H. J. Kimble, “The quantum internet,” Nature (London)453, 1023–1030 (2008). [CrossRef]
  13. A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature (London)398, 189–190 (1999). [CrossRef]
  14. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature (London)453, 1008–1015 (2008). [CrossRef]
  15. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82, 1971–1974 (1999). [CrossRef]
  16. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett.81, 3631–3634 (1998). [CrossRef]
  17. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature (London)438, 828–832 (2005). [CrossRef]
  18. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science313, 1423–1425 (2006). [CrossRef] [PubMed]
  19. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298, 1372–1377 (2002). [CrossRef] [PubMed]
  20. R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light and matter,” J. Phys. B: At. Mol. Opt. Phys.38, S551–S565 (2005). [CrossRef]
  21. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett.98, 193601 (2007). [CrossRef] [PubMed]
  22. K. J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003). [CrossRef]
  23. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  24. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006). [CrossRef]
  25. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003). [CrossRef]
  26. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005). [CrossRef]
  27. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance of single defect centers,” Science276, 2012–2014 (1997). [CrossRef]
  28. T. A. Kennedy, J. S. Colton, J. E. Butler, R. C. Linares, and P. J. Doering, “Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition,” Appl. Phys. Lett.83, 4190–4192 (2003). [CrossRef]
  29. R. Hanson, O. Gywat, and D. D. Awschalom, “Room-temperature manipulation and decoherence of a single spin in diamond,” Phys. Rev. B74, 161203(R) (2006). [CrossRef]
  30. S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser & Photon. Rev.3, 556–574 (2009). [CrossRef]
  31. A. M. Stoneham, “Is a room-temperature, solid-state quantum computer mere fantasy?” Physics2, 34 (2009). [CrossRef]
  32. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditoinal quantum gate,” Phys. Rev. Lett.93, 130501 (2004). [CrossRef] [PubMed]
  33. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007). [CrossRef] [PubMed]
  34. T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature (London)484, 82–86 (2012). [CrossRef]
  35. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010). [CrossRef]
  36. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys.7, 789–793 (2011). [CrossRef]
  37. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010). [CrossRef] [PubMed]
  38. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A84, 043849 (2011). [CrossRef]
  39. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett.95, 191115 (2009). [CrossRef]
  40. S. Schietinger and O. Benson, “Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator,” J. Phys. B: At. Mol. Opt. Phys.42, 114001 (2009). [CrossRef]
  41. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006). [CrossRef] [PubMed]
  42. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano. Lett.9, 1447–1450 (2009). [CrossRef] [PubMed]
  43. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano. Lett.8, 3911–3915 (2008). [CrossRef] [PubMed]
  44. P. E. Barclay, K. M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X1, 011007 (2011). [CrossRef]
  45. K. M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys.13, 055023 (2011). [CrossRef]
  46. P. Xue, “A controlled phase gate with nitrogen-vacancy centers in nanocrystal coupled to a silica microsphere cavity,” Chin. Phys. Lett.27, 060301 (2010). [CrossRef]
  47. P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009). [CrossRef] [PubMed]
  48. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85, 031805(R) (2012). [CrossRef]
  49. G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B84, 045310 (2011). [CrossRef]
  50. G. Y. Chen, C. M. Li, and Y. N. Chen, “Generating maximum entanglement under asymmetric couplings to surface plasmons,” Opt. Lett.37, 1337–1339 (2012). [CrossRef] [PubMed]
  51. W. L. Yang, Z. Q. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010). [CrossRef]
  52. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett.96, 241113 (2010) [CrossRef]
  53. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. H. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805(R) (2011). [CrossRef]
  54. Q. Chen, W. Yang, M. Feng, and J. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  55. P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A85, 042306 (2012). [CrossRef]
  56. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Splitting of high-Q mie modes induced by light backscattering in silica microspheres,” Opt. Lett.20, 1835–1837 (1995). [CrossRef] [PubMed]
  57. X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A83, 023803 (2011). [CrossRef]
  58. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano. Lett.11, 1049–1054 (2011). [CrossRef] [PubMed]
  59. J. Merlein, M. Kah, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  60. M. Scala, B. Militello, A. Messina, J. Piilo, and S. Maniscalco, “Microscopic derivation of the Jaynes-Cummings model with cavity losses,” Phys. Rev. A75, 013811 (2007). [CrossRef]
  61. V. Montenegro and M. Orszag, “Creation of entanglement of two atoms coupled to two distant cavities with losses,” J. Phys. B: At. Mol. Opt. Phys.44, 154019 (2011). [CrossRef]
  62. M. Wilczewski and M. Czachor, “Theory versus experiment for vacuum rabi oscillations in lossy cavities,” Phys. Rev. A79, 033836 (2009). [CrossRef]
  63. E. B. Davies, “Markovian master equations,” Commun. Math. Phys.39, 91–110 (1974). [CrossRef]
  64. E. B. Davies, Quantum Theory of Open System (Academic, London, 1976).
  65. H. P. Breuer and F. Petruccione, The Theory of Open Quantum System (Clarendon, Oxford, 2006).
  66. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett.80, 2245–2248 (1998). [CrossRef]
  67. M. Orszag and M. Hernandez, “Coherence and entanglement in a two-qubit system,” Adv. Opt. Photon.2, 229–286 (2010). [CrossRef]
  68. J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A81, 042309 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited