OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3557–3572

Rapid fabrication of miniature lens arrays by four-axis single point diamond machining

Brian McCall and Tomasz S. Tkaczyk  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3557-3572 (2013)
http://dx.doi.org/10.1364/OE.21.003557


View Full Text Article

Enhanced HTML    Acrobat PDF (2693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error.

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1920) Optical design and fabrication : Diamond machining
(220.3630) Optical design and fabrication : Lenses
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 8, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: January 22, 2013
Published: February 5, 2013

Citation
Brian McCall and Tomasz S. Tkaczyk, "Rapid fabrication of miniature lens arrays by four-axis single point diamond machining," Opt. Express 21, 3557-3572 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004). [CrossRef] [PubMed]
  2. B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011). [CrossRef] [PubMed]
  3. E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011). [CrossRef] [PubMed]
  4. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express19(18), 17439–17452 (2011). [CrossRef] [PubMed]
  5. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  6. D. Miyazaki, K. Ito, Y. Nakao, T. Toyoda, and Y. Masaki, “Retrieval of three-dimensional image from compound-eye imaging with defocus using ray tracing,” in Proceedings of IEEE International Conference on Innovative Computing Information and Control (Institute of Electrical and Electronics Engineers, Dalian, Liaoning, 2008), 51–54.
  7. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005). [CrossRef]
  8. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett.30(13), 1707–1709 (2005). [CrossRef] [PubMed]
  9. G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009). [CrossRef]
  10. C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011). [CrossRef]
  11. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011). [CrossRef] [PubMed]
  12. Contour Fine Tooling and Technodiamont, “Reaching new heights in clearance and sweep,” http://contour-diamonds.com/GB/publications/CuttingEdge/Contour%20Cutting%20Edge%20April%202012/Contour%20Cutting%20Edge%20Apr%202012.pdf .
  13. J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express12(7), 1294–1303 (2004). [CrossRef] [PubMed]
  14. T. D. Milster and T. S. Tkaczyk, “Miniature and Micro-Optics,” in Handbook of Optics1, M. Bass, ed. (McGraw-Hill Professional, 2010), 22.1–22.50.
  15. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt.27(7), 1281–1284 (1988). [CrossRef] [PubMed]
  16. W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001). [CrossRef]
  17. F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004). [CrossRef]
  18. S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006). [CrossRef]
  19. W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005). [CrossRef]
  20. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006). [CrossRef]
  21. N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008). [CrossRef]
  22. S. Scheiding, R. Steinkopf, A. Kolbmüller, S. Risse, R. Eberhardt, and A. Tünnerman, “Lens array manufacturing using a driven diamond tool on an ultra precision lathe,” in Vol 2 of 9th International Conference of the European Society for Precision Engineering and Nanotechnology, H. van Brussel ed. (EUSPN 2009), 423–426.
  23. S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011). [CrossRef]
  24. B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010). [CrossRef] [PubMed]
  25. L. L. C. Moore Nanotechnology Systems, “General diamond machining parameters for ultra-precision machining systems.” (Moore Nanotechnology Systems, Keene NH, 2003).
  26. T. Stewart, A. Engineer, and M. N. Systems, LLC. (Nanotech®), 230 Old Homestead Hwy., Swanzey, N.H, 03446 (personal communication, 2013).
  27. M. Pfeffer, “Optomechanics of plastic optical components,” in Handbook of Plastic Optics, S. Bäumer, ed. (Wiley-VCH, New York, 2005), 7–33.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1711 KB)     
» Media 2: MPG (2438 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited