OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3573–3581

Ultrafast nonlinear mirrors with broad spectral and angular bandwidths in the visible spectral range

James Hsu, Canek Fuentes-Hernandez, Alfred R. Ernst, and Bernard Kippelen  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3573-3581 (2013)
http://dx.doi.org/10.1364/OE.21.003573


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel nonlinear mirror structure is presented. A 23 nm-thick Au thin film separated from a 100 nm-thick Ag film by a dielectric spacer is used to drive the nonlinear optical response of the mirror. The linear and nonlinear optical properties of the mirror can be tuned by optimizing its layer thickness distribution. A figure-of-merit for the change in reflectance is derived for the nonlinear mirror and the nonlinear refractive index change of the Au layer is shown to be significantly enhanced in the mirror structure. The ultrafast reflectance change of the nonlinear mirror, studied using femtosecond white-light continuum pump-probe experiments, shows an extremely large magnitude and is both spectrally and angularly broad in the visible range.

© 2013 OSA

OCIS Codes
(160.3900) Materials : Metals
(230.4040) Optical devices : Mirrors
(230.4320) Optical devices : Nonlinear optical devices
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optical Devices

History
Original Manuscript: November 8, 2012
Manuscript Accepted: January 17, 2013
Published: February 5, 2013

Citation
James Hsu, Canek Fuentes-Hernandez, Alfred R. Ernst, and Bernard Kippelen, "Ultrafast nonlinear mirrors with broad spectral and angular bandwidths in the visible spectral range," Opt. Express 21, 3573-3581 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000). [CrossRef]
  2. Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986). [CrossRef]
  3. D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984). [CrossRef]
  4. C. S. Yelleswarapu, P. F. Wu, S. R. Kothapalli, D. V. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express14(4), 1451–1457 (2006). [CrossRef] [PubMed]
  5. C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008). [CrossRef] [PubMed]
  6. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B45(3), 191–195 (1988). [CrossRef]
  7. J. B. Dherbecourt, A. Denoeud, J. M. Melkonian, M. Raybaut, A. Godard, M. Lefebvre, and E. Rosencher, “Picosecond tunable mode locking of a Cr(2+):ZnSe laser with a nonlinear mirror,” Opt. Lett.36(5), 751–753 (2011). [CrossRef] [PubMed]
  8. L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).
  9. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007). [CrossRef]
  10. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967). [CrossRef]
  11. J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012). [CrossRef] [PubMed]
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001), pp. 52–53.
  13. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010). [CrossRef]
  14. K. H. Bennemann, ed., Nonlinear Optics in Metals, Femtosecond Time-Resolved Linear and Second-Order Reflectivity of Metals (Oxford University, 1998), Vol. 98, pp. 220–239.
  15. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987). [CrossRef] [PubMed]
  16. C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited