OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3582–3594

Low loss coupling to sub-micron thick rib and nanowire waveguides by vertical tapering

S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, and B. Luther-Davies  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3582-3594 (2013)
http://dx.doi.org/10.1364/OE.21.003582


View Full Text Article

Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly nonlinear planar glass waveguides have been shown to be useful for all optical signal processing. However, the typical SMF-28 fiber to waveguide coupling loss of ~5dB/end remains a barrier to practical implementation. Low loss coupling to a fiber using vertical tapering of the waveguide film is analyzed for rib and nanowire waveguides and experimentally demonstrated for ribs showing polarization and wavelength independence over >300nm bandwidth. Tapers with essentially zero excess loss led to total losses from the waveguide to fiber core of 1.1dB per facet comprising only material absorption (0.75dB) and mode overlap loss (0.36dB), both of which can be eliminated with improvements to processing and materials.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4670) Materials : Optical materials
(230.7370) Optical devices : Waveguides
(310.2785) Thin films : Guided wave applications

ToC Category:
Integrated Optics

History
Original Manuscript: November 19, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 25, 2013
Published: February 5, 2013

Citation
S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, and B. Luther-Davies, "Low loss coupling to sub-micron thick rib and nanowire waveguides by vertical tapering," Opt. Express 21, 3582-3594 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3582


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010). [CrossRef]
  2. M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007). [CrossRef]
  3. M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010). [CrossRef]
  4. V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  5. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010). [CrossRef] [PubMed]
  6. V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007). [CrossRef]
  7. M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010). [CrossRef]
  8. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a Chalcogenide chip,” Opt. Express17(11), 9314–9322 (2009). [CrossRef] [PubMed]
  9. R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010). [CrossRef]
  10. C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).
  11. E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010). [CrossRef]
  12. C. C. Evans, K. Shtyrkova, J. D. Bradley, E. Ippen, and E. Mazur, “Spectral broadening of femtosecond pulses in polycrystalline anatase titanium dioxide waveguides,” paper JW4D.4. in Nonlinear Photonics, OSA Technical Digest, Optical Society of America, 2012.
  13. C. Evans, J. Bradley, O. Reshef, E. Marti-Panameño, and E. Mazur, “Ultrafast all-optical switching in TiO2,” Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, NATO Science for Peace and Security Series B: Physics and Biophysics, ISBN 978–94–007–5312–9. Springer Science + Business Media Dordrecht, 2013, p. 377.
  14. W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012). [CrossRef]
  15. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  16. A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011). [CrossRef]
  17. D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010). [CrossRef] [PubMed]
  18. J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  19. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  20. T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013). [CrossRef]
  21. K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013). [CrossRef]
  22. A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012). [CrossRef]
  23. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B27(2), 187–196 (2010). [CrossRef]
  24. R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003). [CrossRef]
  25. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010). [CrossRef]
  26. C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004). [CrossRef]
  27. X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010). [CrossRef]
  28. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009). [CrossRef] [PubMed]
  29. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010). [CrossRef]
  30. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express15(22), 14566–14572 (2007). [CrossRef] [PubMed]
  31. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss Chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett.35(19), 3228–3230 (2010). [CrossRef] [PubMed]
  32. http://www.ozoptics.com .
  33. B. Batagelj, “Conversion efficiency of fiber wavelength converter based on degenerate FWM,” in 2nd International Conference on Transparent Optical Networks, 2000 (2000), pp. 179–182.
  34. I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997). [CrossRef]
  35. L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006). [CrossRef]
  36. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005). [CrossRef]
  37. T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, “Spot-size converters for rib-type Silicon photonic wire waveguides” in 2008 5th IEEE International Conference on Group IV Photonics(2008), pp. 200–202 (2008).
  38. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010). [CrossRef]
  39. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002). [CrossRef]
  40. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  41. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  42. T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009). [CrossRef]
  43. P. K. Tien, R. J. Martin, and G. Smolinsky, “Formation of light-guiding interconnections in an integrated optical circuit by composite tapered-film coupling,” Appl. Opt.12(8), 1909–1916 (1973). [CrossRef] [PubMed]
  44. S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995). [CrossRef]
  45. F. Soares, F. Karouta, E. Geluk, J. van Zantvoort, H. de Waardt, R. Baets, and M. Smit, “Low loss InP based spot size converter based on a vertical taper,” in 12th European Conference on Integrated Optics (Grenoble, France, 2005), pp. 104–107.
  46. R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004). [CrossRef]
  47. www.nufern.com .
  48. www.fibercore.com .
  49. M. Fadel, M. Bulters, M. Niemand, E. Voges, and P. Krummrich, “Low-loss and low-birefringence high-contrast Silicon-Oxynitride waveguides for optical communication,” J. Lightwave Technol.27(6), 698–705 (2009). [CrossRef]
  50. H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991). [CrossRef]
  51. A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).
  52. www.feasa.com .
  53. www.microchem.com .
  54. D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009). [CrossRef]
  55. www.microresist.de/home_en.htm .
  56. M. Nordstrom, D. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol.25(5), 1284–1289 (2007). [CrossRef]
  57. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol.27(18), 4091–4096 (2009). [CrossRef]
  58. S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low loss etched Ge33As12Se55 Chalcogenide waveguides,” in Australian Conference on Optical Fiber Technology (2006), pp. 75–78.
  59. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012). [CrossRef] [PubMed]
  60. T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited