OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3746–3755

Generation of a periodic array of radially polarized Plasmonic focal spots

Jonathan Bar-David, Gilad M. Lerman, Liron Stern, Noa Mazurski, and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3746-3755 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates experimentally the tight focusing of a 3X3 array of radially polarized diffraction orders, and the coupling of this array of spots to surface plasmon polaritons (SPPs), propagating on a uniform metal film, and effectively generating a periodic structure of plasmonic sources by the use of structured illumination pattern, rather than by structuring the plasmonic sample. Using near field measurements, we observed coherent interactions between these multiple plasmonic sources as they propagate towards each other. The demonstrated setup exploits the previously demonstrated advantages of radially polarized light in coupling to SPPs and in generating sharper plasmonic hot spots and expends its use towards mitigating parallel processing challenges. The experimental results are in good agreement with the theory, showing interference fringes having periodicity compatible with the plasmonic SPP wavelength. The demonstrated approach of generating array of hot spots on flat metallic films is expected to play a role in variety of applications, e.g. microscopy, lithography, sensing and optical memories.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference

ToC Category:
Optics at Surfaces

Original Manuscript: December 13, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 21, 2013
Published: February 6, 2013

Jonathan Bar-David, Gilad M. Lerman, Liron Stern, Noa Mazurski, and Uriel Levy, "Generation of a periodic array of radially polarized Plasmonic focal spots," Opt. Express 21, 3746-3755 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Editorial, “Surface plasmon resurrection,” Nat. Photonics6, 707 (2012).
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  7. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009). [CrossRef] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  9. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  10. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  11. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17(2), 924–932 (2009). [CrossRef] [PubMed]
  12. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  13. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett.34(6), 722–724 (2009). [CrossRef] [PubMed]
  14. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011). [CrossRef] [PubMed]
  15. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010). [CrossRef] [PubMed]
  16. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009). [CrossRef] [PubMed]
  17. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  18. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007). [CrossRef] [PubMed]
  19. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett.32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  22. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  23. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  24. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  25. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express17(16), 14270–14280 (2009). [CrossRef] [PubMed]
  26. L. Novotny and B. Hecht, “Principals of Nano-Optics,” Cambridge University Press, Cambridge, 2007.
  27. M. Born and E. Wolf, “Fundamentals of optics,” (Pergamon, 1959).
  28. J. W. Goodman, “Introduction to Fourier Optics,” (McGraw-Hill, 1996).
  29. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971). [CrossRef]
  30. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt.34(26), 5961–5969 (1995). [CrossRef] [PubMed]
  31. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007). [CrossRef] [PubMed]
  32. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited