OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3826–3834

Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter

Zhenyang Ding, X. Steve Yao, Tiegen Liu, Yang Du, Kun Liu, Junfeng Jiang, Zhuo Meng, and Hongxin Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3826-3834 (2013)
http://dx.doi.org/10.1364/OE.21.003826


View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple and effective method to compensate the optical frequency tuning nonlinearity of a tunable laser source (TLS) in a long range optical frequency-domain reflectometry (OFDR) by using the deskew filter, where a frequency tuning nonlinear phase obtained from an auxiliary interferometer is used to compensate the nonlinearity effect on the beating signals generated from a main OFDR interferometer. The method can be applied to the entire spatial domain of the OFDR signals at once with a high computational efficiency. With our proposed method we experimentally demonstrated a factor of 93 times improvement in spatial resolution by comparing the results of an OFDR system with and without nonlinearity compensation. In particular we achieved a measurement range of 80 km and a spatial resolution of 20 cm and 1.6 m at distances of 10 km and 80 km, respectively with a short signal processing time of less than 1 s for 5 × 106 data points. The improved performance of the OFDR with a high spatial resolution, a long measurement range and a short process time will lead to practical applications in the real-time monitoring, test and measurement of fiber optical communication networks and sensing systems.

© 2013 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(120.1840) Instrumentation, measurement, and metrology : Densitometers, reflectometers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 22, 2013
Manuscript Accepted: January 23, 2013
Published: February 7, 2013

Citation
Zhenyang Ding, X. Steve Yao, Tiegen Liu, Yang Du, Kun Liu, Junfeng Jiang, Zhuo Meng, and Hongxin Chen, "Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter," Opt. Express 21, 3826-3834 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981). [CrossRef]
  2. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13(2), 666–674 (2005). [CrossRef] [PubMed]
  3. B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical frequency domain reflectometry for single- and multi-mode avionics fiber-optics applications,” IEEE Conference Avionics Fiber-Optics and Photonics, 2006 (IEEE, 2006) pp. 38–39.
  4. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express20(12), 13138–13145 (2012). [CrossRef] [PubMed]
  5. E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express16(17), 13139–13149 (2008). [CrossRef] [PubMed]
  6. K. Yuksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express17(7), 5845–5851 (2009). [CrossRef] [PubMed]
  7. K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).
  8. T. J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt.44(35), 7630–7634 (2005). [CrossRef] [PubMed]
  9. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(10), 10446–10461 (2010). [CrossRef] [PubMed]
  10. Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012). [CrossRef] [PubMed]
  11. M. Froggatt, R. G. Seeley, and D. K. Gifford, “High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherence length, ” U.S. Pat. 7515276 (Jul. 18, 2007).
  12. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012). [CrossRef]
  13. Luna, “Optical backscatter reflectometer (Model OBR 4600)”, http://lunainc.com/wp-content/uploads/2012/11/NEW-OBR4600_Data-Sheet_Rev-03.pdf .
  14. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol.26(18), 3287–3294 (2008). [CrossRef]
  15. M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003). [CrossRef]
  16. A. Meta, P. Hoogeboom, and L. P. Ligthart, “Range non-linearities correction in FMCW SAR,” in IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006 (IEEE, 2006), 403–406.
  17. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar (Artech House, 1995).
  18. G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996). [CrossRef]
  19. S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993). [CrossRef]
  20. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited