OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 3990–3995

Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell

Dinesh N. Naik, Giancarlo Pedrini, and Wolfgang Osten  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 3990-3995 (2013)
http://dx.doi.org/10.1364/OE.21.003990


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ideas of incoherent holography were conceived after the invention of coherent-light holography and their concepts seems indirectly related to it. In this work, we adopt an approach based on statistical optics to describe the process of recording of an incoherent-object hologram as a complex spatial coherence function. A Sagnac radial shearing interferometer is used for the correlation of optical fields and a Pockels cell is used to phase shift the interfering fields with the objective to quantify and to retrieve the spatial coherence function.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 11, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 28, 2012
Published: February 11, 2013

Citation
Dinesh N. Naik, Giancarlo Pedrini, and Wolfgang Osten, "Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell," Opt. Express 21, 3990-3995 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-3990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, Ed. (Chapman and Hall Ltd., 1962), p. 305.
  3. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555_1–1556 (1965).
  4. G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett.7(9), 229 (1965). [CrossRef]
  5. G. Cochran, “New method of making Fresnel transforms,” J. Opt. Soc. Am.56(11), 1513–1517 (1966). [CrossRef]
  6. P. J. Peters, “Incoherent holography with mercury light source,” Appl. Phys. Lett.8(8), 209–210 (1966). [CrossRef]
  7. H. R. Worthington., “Production of holograms with incoherent illumination,” J. Opt. Soc. Am.56(10), 1397–1398 (1966). [CrossRef]
  8. O. Bryngdahl and A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt.9(1), 231–232 (1970). [CrossRef] [PubMed]
  9. C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, “Twin - Image Holography with Spectrally Broad Light,” J. Opt.11(3), 149–152 (1980). [CrossRef]
  10. G. D. Collins, “Achromatic Fourier transform holography,” Appl. Opt.20(18), 3109–3119 (1981). [CrossRef] [PubMed]
  11. E. Ribak, C. Roddier, F. Roddier, and J. B. Breckinridge, “Signal-to-noise limitations in white light holography,” Appl. Opt.27(6), 1183–1186 (1988). [CrossRef] [PubMed]
  12. C. Falldorf, E. Kolenovic, and W. Osten, “Speckle shearography using a multiband light source,” Opt. Lasers Eng.40(5-6), 543–552 (2003). [CrossRef]
  13. A. Kozma and N. Massey, “Bias level reduction of incoherent holograms,” Appl. Opt.8(2), 393–397 (1969). [CrossRef] [PubMed]
  14. S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt.36(20), 4784–4791 (1997). [CrossRef] [PubMed]
  15. G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett.37(4), 713–715 (2012). [CrossRef] [PubMed]
  16. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett.32(8), 912–914 (2007). [CrossRef] [PubMed]
  17. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett.37(17), 3723–3725 (2012). [CrossRef] [PubMed]
  18. W. H. Carter and E. Wolf, “Correlation theory of wavefields generated by fluctuating three-dimensional, primary, scalar sources: I. General theory,” Opt. Acta (Lond.)28(2), 227–244 (1981). [CrossRef]
  19. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A4(10), 1861–1868 (1987). [CrossRef]
  20. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science284(5423), 2164–2166 (1999). [CrossRef] [PubMed]
  21. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express13(23), 9629–9635 (2005). [CrossRef] [PubMed]
  22. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift,” Opt. Express17(13), 10633–10641 (2009). [CrossRef] [PubMed]
  23. D. N. Naik, T. Ezawa, R. K. Singh, Y. Miyamoto, and M. Takeda, “Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer,” Opt. Express20(18), 19658–19669 (2012). [CrossRef] [PubMed]
  24. C. W. McCutchen, “Generalized Source and the van Cittert-Zernike Theorem: A Study of the Spatial Coherence Required for Interferometry,” J. Opt. Soc. Am.56(6), 727–732 (1966). [CrossRef]
  25. J. Rosen and A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. A13(10), 2091–2095 (1996). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970), Chap. 10.
  27. J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 1985), Chap. 5.
  28. M. V. R. K. Murty, “A compact radial shearing interferometer based on the law of refraction,” Appl. Opt.3(7), 853–857 (1964). [CrossRef]
  29. T. Dartigalongue and F. Hache, “Precise alignment of a longitudinal Pockels cell for time-resolved circular dichorism experiments,” J. Opt. Soc. Am. B20(8), 1780–1787 (2003). [CrossRef]
  30. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt.26(13), 2504–2506 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MP4 (552 KB)      QuickTime
» Media 2: MP4 (566 KB)      QuickTime
» Media 3: MP4 (583 KB)      QuickTime
» Media 4: MP4 (599 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited