OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 3996–4004

Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver

Gregory C. Dyer, Christopher D. Norquist, Michael J. Cich, Albert D. Grine, Charles T. Fuller, John L. Reno, and Michael C. Wanke  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 3996-4004 (2013)
http://dx.doi.org/10.1364/OE.21.003996


View Full Text Article

Enhanced HTML    Acrobat PDF (1330 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I–V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.

© 2013 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(040.2235) Detectors : Far infrared or terahertz
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Detectors

History
Original Manuscript: November 1, 2012
Revised Manuscript: January 20, 2013
Manuscript Accepted: January 21, 2013
Published: February 11, 2013

Citation
Gregory C. Dyer, Christopher D. Norquist, Michael J. Cich, Albert D. Grine, Charles T. Fuller, John L. Reno, and Michael C. Wanke, "Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver," Opt. Express 21, 3996-4004 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-3996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Köhler, A. Tredicucci, F. Beltram, H. Beere, E. Linfield, A. Davies, D. Ritchie, R. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef] [PubMed]
  2. B.S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517–525 (2007). [CrossRef]
  3. S. Barbieri, J. Alton, C. Baker, T. Lo, H. Beere, and D. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express13, 6497–6503 (2005). [CrossRef] [PubMed]
  4. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88, 153903 (2006). [CrossRef]
  5. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18, 1415–1417 (2006). [CrossRef]
  6. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared micrometer camera,” Opt. Lett33, 440–442 (2008). [CrossRef] [PubMed]
  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86, 241116 (2005). [CrossRef]
  8. H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89, 061115 (2006). [CrossRef]
  9. S. Barbieri, J. Alton, H. Beere, E. Linfield, D. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett.29, 1632–1634 (2004). [CrossRef] [PubMed]
  10. H.-W. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005). [CrossRef] [PubMed]
  11. M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron.14, 370–373 (2008). [CrossRef]
  12. J. Gao, J. Hovenier, Z. Yang, J. Baselmans, A. Baryshev, M. Hajenius, T. Klapwijk, A. Adam, T. Klaassen, B. Williams, S. Kumar, Q. Hu, and J. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett.86, 244104 (2005). [CrossRef]
  13. H. Richter, A. D. Semenov, S. G. Pavlov, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, K. S. Il’in, M. Siegel, and H.-W. Huebers, “Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler,” Appl. Phys. Lett.93, 141108 (2008). [CrossRef]
  14. A. Baryshev, J. N. Hovenier, A. J. L. Adam, I. Kasalynas, J. R. Gao, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser,” Appl. Phys. Lett.89, 031115 (2006). [CrossRef]
  15. M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceivers,” Nat. Photonics4, 565–569 (2010). [CrossRef]
  16. M. C. Wanke, A. D. Grine, C. T. Fuller, C. D. Nordquist, M. J. Cich, J. L. Reno, and M. Lee, “Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers,” Opt. Express19, 24810–24815 (2011). [CrossRef] [PubMed]
  17. M.C. Wanke, M. Lee, C.D. Nordquist, M.J. Cich, M. Cavaliere, A.M. Rowen, J.R. Gillen, C.L. Arrington, A.D. Grine, C.T. Fuller, and J.L. Reno, “Integrated chip-scale THz technology,” in Micro- and Nanotechnology Sensors, Systems, and Applications III, T. George, M. Saif Islam, and A.K. Dutta, eds., Proc. SPIE8031, 80310E (2011). [CrossRef]
  18. P. Gellie, S. Barbieri, J.-F. c. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express18, 20799–20816 (2010). [CrossRef] [PubMed]
  19. M. Hudait, “Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures,” Phys. B: Condensed Matter307, 125–137 (2001). [CrossRef]
  20. M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett.89, 021111 (2006). [CrossRef]
  21. P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microwave Theory Tech.47, 596–604 (1999). [CrossRef]
  22. I. Mehdi, S. M. Marazita, D. A. Humphrey, T.-H. Lee, R. J. Dengler, J. E. Oswald, A. J. Pease, S. C. Martin, W. L. Bishop, T. W. Crowe, and P. H. Siegel, “Improved 240-GHz subharmonically pumped planar Schottky diode mixers for space-borne applications,” IEEE Trans. Microwave Theory Tech.46, 2036–2042 (1998). [CrossRef]
  23. J. L. Hesler, W. R. Hall, T. W. Crowe, R. M. I. Weikle, B. S. J. Deaver, R. F. Bradley, and S.-K. P. M. Theory, and I. T. o.Techniques, “Fixed-tuned submillimeter wavelength waveguide mixers using planar Schottky-barrier diodes,” Microwave Theory and Techniques, IEEE Transactions on45, 653–658 (1997). [CrossRef]
  24. H. Hubers, G. Schwaab, and H. Roser, “Video detection and mixing performance of GaAs Schottky-barrier diodes at 30-THz and comparison with metal-insulator-metal diodes,” J Appl Phys75, 4243–4248 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited