OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4036–4043

1xN plasmonic power splitters based on metal-insulator-metal waveguides

Chyong-Hua Chen and Kao-Sung Liao  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4036-4043 (2013)
http://dx.doi.org/10.1364/OE.21.004036


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Novel plasmonic power splitters constructed from a rectangular ring resonator with direct-connected input and output waveguides are presented and numerically investigated. An analytical model and systematic approach for obtaining the appropriate design parameters are developed by designing an equivalent lumped circuit model for the transmission lines and applying it to plasmonic waveguides. This approach can dramatically reduce simulation times required for determining the desired locations of the output waveguides. Three examples are shown, the 1 × 3, 1 × 4, and 1 × 5 equal-power splitters, with the design method being easily extended to any number of output ports.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(350.4010) Other areas of optics : Microwaves

ToC Category:
Integrated Optics

History
Original Manuscript: November 16, 2012
Revised Manuscript: January 31, 2013
Manuscript Accepted: February 4, 2013
Published: February 11, 2013

Citation
Chyong-Hua Chen and Kao-Sung Liao, "1xN plasmonic power splitters based on metal-insulator-metal waveguides," Opt. Express 21, 4036-4043 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006). [CrossRef]
  3. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  5. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010). [CrossRef] [PubMed]
  6. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  7. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  8. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  9. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008). [CrossRef] [PubMed]
  10. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14(23), 11318–11323 (2006). [CrossRef] [PubMed]
  11. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express16(19), 14369–14379 (2008). [CrossRef] [PubMed]
  12. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011). [CrossRef]
  13. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007). [CrossRef]
  14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011). [CrossRef] [PubMed]
  15. J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010). [CrossRef]
  16. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  17. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008). [CrossRef]
  18. K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited