OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4055–4060

Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells

Sangjun Lee, SungJun In, Daniel R. Mason, and Namkyoo Park  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4055-4060 (2013)
http://dx.doi.org/10.1364/OE.21.004055


View Full Text Article

Enhanced HTML    Acrobat PDF (1659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Solar Energy

History
Original Manuscript: November 16, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 24, 2013
Published: February 11, 2013

Citation
Sangjun Lee, SungJun In, Daniel R. Mason, and Namkyoo Park, "Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells," Opt. Express 21, 4055-4060 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007). [CrossRef]
  2. P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008). [CrossRef]
  3. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009). [CrossRef] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  6. V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  7. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  8. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  9. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  10. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  11. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007). [CrossRef]
  12. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009). [CrossRef]
  13. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  14. R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012). [CrossRef]
  15. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  16. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012). [CrossRef] [PubMed]
  17. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:. [CrossRef]
  18. W. E. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express18(6), 5993–6007 (2010). [CrossRef] [PubMed]
  19. Comsol Multiphysics, http://www.comsol.com .
  20. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  21. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M. H. Shih, C.-M. Wang, M. C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett.36(8), 1440–1442 (2011). [CrossRef] [PubMed]
  22. Y. C. Chang, C. M. Wang, M. N. Abbas, M.-H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009). [CrossRef] [PubMed]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010). [CrossRef]
  25. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited