## Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime |

Optics Express, Vol. 21, Issue 4, pp. 4093-4105 (2013)

http://dx.doi.org/10.1364/OE.21.004093

Enhanced HTML Acrobat PDF (940 KB)

### Abstract

We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.

© 2013 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5568) Quantum optics : Quantum cryptography

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: December 3, 2012

Revised Manuscript: January 17, 2013

Manuscript Accepted: January 18, 2013

Published: February 11, 2013

**Citation**

Cong Cao, Chuan Wang, Ling-yan He, and Ru Zhang, "Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime," Opt. Express **21**, 4093-4105 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4093

Sort: Year | Journal | Reset

### References

- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992). [CrossRef] [PubMed]
- M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999). [CrossRef]
- A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999). [CrossRef]
- L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004). [CrossRef]
- A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
- C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992). [CrossRef] [PubMed]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008). [CrossRef]
- G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002). [CrossRef]
- F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003). [CrossRef]
- C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006). [CrossRef]
- H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).
- L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996). [CrossRef] [PubMed]
- D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996). [CrossRef] [PubMed]
- J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001). [CrossRef]
- J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003). [CrossRef] [PubMed]
- C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002). [CrossRef] [PubMed]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008). [CrossRef]
- Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010). [CrossRef]
- X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010). [CrossRef]
- F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).
- M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998). [CrossRef]
- F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A84, 052312 (2011). [CrossRef]
- C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996). [CrossRef] [PubMed]
- S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999). [CrossRef]
- B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000). [CrossRef]
- Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001). [CrossRef]
- T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008). [CrossRef]
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012). [CrossRef]
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A85, 022311 (2012). [CrossRef]
- M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005). [CrossRef]
- M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005). [CrossRef]
- X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005). [CrossRef]
- Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006). [CrossRef]
- R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006). [CrossRef] [PubMed]
- C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011). [CrossRef]
- C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A86, 012323 (2012). [CrossRef]
- Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012). [CrossRef]
- J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001). [CrossRef]
- S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001). [CrossRef] [PubMed]
- L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004). [CrossRef] [PubMed]
- Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004). [CrossRef]
- K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005). [CrossRef]
- J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005). [CrossRef] [PubMed]
- J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006). [CrossRef] [PubMed]
- H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007). [CrossRef]
- T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007). [CrossRef] [PubMed]
- F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009). [CrossRef]
- C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008). [CrossRef]
- J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009). [CrossRef]
- Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009). [CrossRef]
- Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010). [CrossRef]
- J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010). [CrossRef]
- P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006). [CrossRef] [PubMed]
- T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006). [CrossRef]
- F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010). [CrossRef]
- F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010). [CrossRef]
- S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005). [CrossRef]
- K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007). [CrossRef] [PubMed]
- Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007). [CrossRef] [PubMed]
- B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
- J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004). [CrossRef]
- A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.